TOPOLOGICAL EMBEDDINGS IN CODIMENSION ONE¹

BY P. F. DUVALL, JR.²

Communicated by O. G. Harrold, Jr. April 10, 1968

1. Introduction. Suppose Q^{n+1} is a piecewise linear (n+1)-manifold and M^n is a closed topological *n*-manifold embedded in int Q^{n+1} . We seek conditions on the embedding of M which insure that M has arbitrarily small neighborhoods which look like regular neighborhoods of a piecewise linear (PL) submanifold of Q. In particular, we would like M to be contained in a compact (n+1)-dimensional PL submanifold N of Q such that

(1) $M \subset int N$,

(2) M is a strong deformation retract of N, and

(3) N-M is PL homeomorphic to bd $N \times [0, 1)$.

We call any compact (connected) PL submanifold N of Q satisfying (1) a PL manifold neighborhood of M.

We say that Q - M is 1-*lc* at M if for each open set U containing M there is an open set V, $M \subset V \subset U$, such that each loop in V - M is null homotopic in U - M. The purpose of this note is to show that, if M is simply connected and $n \ge 5$, then M has PL manifold neighborhoods satisfying (2) and (3) above if and only if Q - M is 1-*lc* at M.

All homology and cohomology groups will be singular with Z coefficients. i_* (i^*) will denote an inclusion induced map between homology or homotopy (cohomology) groups. The symbol \approx means is isomorphic to or is PL homeomorphic to, depending on the context. I denotes the unit interval [0, 1].

2. Statement of results. Let Q^{n+1} be a connected PL (n+1)-manifold, M^n a closed, 1-connected topological *n*-manifold embedded in int Q. Our main result is

THEOREM 1. If $n \ge 5$, there is a closed PL n-manifold M^* such that M has arbitrarily small PL manifold neighborhoods which are PL homeomorphic to $M^* \times I$ and satisfy (2) and (3) above if and only if Q-M is 1-lc at M.

The proof is postponed until §3.

¹ The work in this paper overlaps the author's doctoral dissertation, which was written under the direction of Professor C. H. Edwards, Jr. at the University of Georgia.

² Partially supported by a National Science Foundation Graduate Fellowship.