TOPOLOGICAL EMBEDDINGS IN CODIMENSION ONE ${ }^{1}$

BY P. F. DUVALL, JR. ${ }^{2}$
Communicated by O. G. Harrold, Jr. April 10, 1968

1. Introduction. Suppose Q^{n+1} is a piecewise linear ($n+1$)-manifold and M^{n} is a closed topological n-manifold embedded in int Q^{n+1}. We seek conditions on the embedding of M which insure that M has arbitrarily small neighborhoods which look like regular neighborhoods of a piecewise linear (PL) submanifold of Q. In particular, we would like M to be contained in a compact ($n+1$)-dimensional PL submanifold N of Q such that
(1) $M \subset$ int N,
(2) M is a strong deformation retract of N, and
(3) $N-M$ is PL homeomorphic to bd $N \times[0,1$).

We call any compact (connected) PL submanifold N of Q satisfying (1) a PL manifold neighborhood of M.

We say that $Q-M$ is $1-l c$ at M if for each open set U containing M there is an open set $V, M \subset V \subset U$, such that each loop in $V-M$ is null homotopic in $U-M$. The purpose of this note is to show that, if M is simply connected and $n \geqq 5$, then M has PL manifold neighborhoods satisfying (2) and (3) above if and only if $Q-M$ is $1-l c$ at M.

All homology and cohomology groups will be singular with Z coefficients. $i_{*}\left(i^{*}\right)$ will denote an inclusion induced map between homology or homotopy (cohomology) groups. The symbol \approx means is isomorphic to or is PL homeomorphic to, depending on the context. I denotes the unit interval $[0,1]$.
2. Statement of results. Let Q^{n+1} be a connected PL $(n+1)$-manifold, M^{n} a closed, 1 -connected topological n-manifold embedded in int Q. Our main result is

Theorem 1. If $n \geqq 5$, there is a closed PL n-manifold M^{*} such that M has arbitrarily small PL manifold neighborhoods which are PL homeomorphic to $M^{*} \times I$ and satisfy (2) and (3) above if and only if $Q-M$ is $1-l c$ at M.

The proof is postponed until $\S 3$.

[^0]
[^0]: ${ }^{1}$ The work in this paper overlaps the author's doctoral dissertation, which was written under the direction of Professor C. H. Edwards, Jr. at the University of Georgia.
 ${ }^{2}$ Partially supported by a National Science Foundation Graduate Fellowship.

