ON THE APPROXIMATION BY C-POLYNOMIALS ${ }^{1}$

BY ZALMAN RUBINSTEIN

Communicated by R. C. Buck, June 11, 1968

1. Introduction. Throughout this note C denotes the unit circle and D its interior. It is the object of this note to give a simple unified treatment to the problem of approximation of a zero free holomorphic function in D (uniformly on compact sets of D) and the problem of bounded approximation of a zero free bounded holomorphic function in D by C-polynomials; i.e. polynomials whose zeros lie on C.

It is known [1], [4] that such approximations are possible in regions whose boundaries satisfy certain smoothness conditions, but the methods used in [1] and [4] yield different approximating sequences. In particular our Main Theorem implies Theorem 1 of [4] for a disk and the Main Theorem of [1]. The proof of the main result is followed by an application of our method to the problem of C-continuation of polynomials [2], [3].

Main Theorem. Let $f(z)=1+c_{1} z+c_{2} z^{2}+\cdots$, be a zero free holomorphic function in D. Then there exists a sequence of C-polynomials assuming the value one at $z=0$ which converges to $f(z)$ uniformly on every compact subset of D. If in addition the function $f(z)$ is bounded in D then the sequence converges to $f(z)$ boundedly.
2. Proof of the main theorem. The following lemma is easily verified by observing some simple properties of the linear transformation $(1-z \alpha)(z-\bar{\alpha})^{-1}$ and applying Rouché's Theorem.

Lemma. If $P(z)$ is a polynomial of degree m which does not vanish in D then the zeros of the polynomial $P(z)+z^{p} P^{*}(z)$, where $P^{*}(z)$ $=z^{m} \bar{P}\left(z^{-1}\right)$ all lie on C for $p=0,1,2, \cdots$ Furthermore $\left|P^{*}(z)\right|$ $\leqq|P(z)|$ for $|z| \leqq 1$.

Let $s_{n}(z)=1+c_{1} z+c_{2} z^{2}+\cdots+c_{n} z^{n}$, and let $r_{k}(k=1,2, \cdots)$ be any sequence of positive numbers strictly increasing to one. There exists a strictly increasing sequence of positive integers n_{k} such that $s_{n_{k}}(z) \neq 0$ and

$$
\left|s_{n_{k}}(z)-f(z)\right|<1 / k \quad \text { for } k=1,2, \cdots
$$

and for $|z|<r_{k}$. Define $t_{n_{k}}(z)=s_{n_{k}}\left(r_{k} z\right)$ and $P_{n_{k}}(z)=t_{n_{k}}(z)+z^{n_{k}} t_{n_{k}}^{*}(z)$. Since $t_{n_{k}}(z)$ does not vanish in D it follows by the lemma that the

[^0]
[^0]: ${ }^{1}$ The author wishes to acknowledge partial support from NSF grant GP-5221.

