ON THE APPROXIMATION BY C-POLYNOMIALS1

BY ZALMAN RUBINSTEIN

Communicated by R. C. Buck, June 11, 1968

1. Introduction. Throughout this note C denotes the unit circle and D its interior. It is the object of this note to give a simple unified treatment to the problem of approximation of a zero free holomorphic function in D (uniformly on compact sets of D) and the problem of bounded approximation of a zero free bounded holomorphic function in D by C-polynomials; i.e. polynomials whose zeros lie on C.

It is known [1], [4] that such approximations are possible in regions whose boundaries satisfy certain smoothness conditions, but the methods used in [1] and [4] yield different approximating sequences. In particular our Main Theorem implies Theorem 1 of [4] for a disk and the Main Theorem of [1]. The proof of the main result is followed by an application of our method to the problem of C-continuation of polynomials [2], [3].

MAIN THEOREM. Let $f(z) = 1 + c_1 z + c_2 z^2 + \cdots$, be a zero free holomorphic function in D. Then there exists a sequence of C-polynomials assuming the value one at z = 0 which converges to f(z) uniformly on every compact subset of D. If in addition the function f(z) is bounded in D then the sequence converges to f(z) boundedly.

2. Proof of the main theorem. The following lemma is easily verified by observing some simple properties of the linear transformation $(1-z\alpha)(z-\bar{\alpha})^{-1}$ and applying Rouché's Theorem.

LEMMA. If P(z) is a polynomial of degree m which does not vanish in D then the zeros of the polynomial $P(z)+z^pP^*(z)$, where $P^*(z)=z^m\overline{P}(z^{-1})$ all lie on C for $p=0,\ 1,\ 2,\cdots$. Furthermore $|P^*(z)|\leq |P(z)|$ for $|z|\leq 1$.

Let $s_n(z) = 1 + c_1 z + c_2 z^2 + \cdots + c_n z^n$, and let r_k $(k = 1, 2, \cdots)$ be any sequence of positive numbers strictly increasing to one. There exists a strictly increasing sequence of positive integers n_k such that $s_{n_k}(z) \neq 0$ and

$$|s_{n_k}(z) - f(z)| < 1/k$$
 for $k = 1, 2, \cdots$

and for $|z| < r_k$. Define $t_{n_k}(z) = s_{n_k}(r_k z)$ and $P_{n_k}(z) = t_{n_k}(z) + z^{n_k} t_{n_k}^*(z)$. Since $t_{n_k}(z)$ does not vanish in D it follows by the lemma that the

¹ The author wishes to acknowledge partial support from NSF grant GP-5221.