A HOMOLOGICAL METHOD FOR COMPUTING CERTAIN WHITEHEAD PRODUCTS

BY MARTIN ARKOWITZ

Communicated by Norman Steenrod, May 13, 1968

1. Introduction. In its simplest form the method for calculating the Whitehead product (WP) $\pi_{n_1}(X) \otimes \pi_{n_2}(X) \to \pi_{n_1+n_2-1}(X)$ may be described as follows. Suppose X is embedded in an H-space E so that the pair (E, X) has trivial homotopy groups in dimensions $< n_1 + n_2$. Then we prove that the WP $[\alpha_1, \alpha_2]$ of $\alpha_1 \in \pi_{n_1}(X) \equiv \pi_{n_1}(E)$ and $\alpha_2 \in \pi_{n_2}(X) \equiv \pi_{n_2}(E)$ is the image under a homomorphism $H_{n_1+n_2}(E) \to \pi_{n_1+n_2-1}(X)$ of the Pontrjagin product of $h(\alpha_1)$ and $h(\alpha_2)$ in the homology ring $H_*(E)$, where $h: \pi_*(E) \to H_*(E)$ denotes the Hurewicz homomorphism. Thus, to determine $[\alpha_1, \alpha_2]$, it is necessary to know (1) the effect of h on α_1 and α_2 , (2) the Pontrjagin product of $h(\alpha_1)$ and $h(\alpha_2)$, (3) the homomorphism $H_{n_1+n_2}(E) \to \pi_{n_1+n_2-1}(X)$.

It is, however, only sometimes possible to find an H-space for which the information (1), (2) and (3) is available. As a first example, consider the classifying space BU_t of the unitary group U_t and the WP

$$\pi_{2r+2}(BU_t) \otimes \pi_{2s+2}(BU_t) \to \pi_{2t+1}(BU_t), t = r + s + 1.$$

Here we embed BU_i in the H-space BU_{∞} and note that the required information is known. In this way we obtain a new proof of a theorem of Bott [1]. For a second example suppose $\pi_i(X) = 0$ for i < n and n < i < 2n - 1 and $\pi_n(X) = \pi$, where n is odd. Then X can be embedded in $K(\pi, n)$. The Pontrjagin square in $H_{2n}(\pi, n)$ is zero and so $[\alpha, \alpha] = 0$ for any $\alpha \in \pi$. This result is due to Meyer and Stein [8] (see also §3).

We actually generalize the preceding method by considering kth order WP's instead of ordinary WP's and by requiring that there exist a pair (E, A) with A operating on E rather than an H-space E. Our main result Theorem 1 then yields for ordinary WP's (k=2) both the assertion of the first paragraph and a theorem of Meyer [4]. For k>2 it enables us, in §3, to extend Bott's theorem by computing kth order WP's in $\pi_*(BU_t)$, and to examine in some detail the kth order WP

$$\pi_n(X) \otimes \cdots \otimes \pi_n(X) \to \pi_{kn-1}(X)$$

when $\pi_i(X) = 0$ for i < n and n < i < kn-1.

Details of these results and other applications will appear elsewhere.