A HOMOLOGICAL METHOD FOR COMPUTING CERTAIN WHITEHEAD PRODUCTS

BY MARTIN ARKOWITZ
Communicated by Norman Steenrod, May 13, 1968

1. Introduction. In its simplest form the method for calculating the Whitehead product (WP) $\pi_{n_{1}}(X) \otimes \pi_{n_{2}}(X) \rightarrow \pi_{n_{1}+n_{2}-1}(X)$ may be described as follows. Suppose X is embedded in an H-space E so that the pair (E, X) has trivial homotopy groups in dimensions $<n_{1}+n_{2}$. Then we prove that the WP $\left[\alpha_{1}, \alpha_{2}\right]$ of $\alpha_{1} \in \pi_{n_{1}}(X) \equiv \pi_{n_{1}}(E)$ and $\alpha_{2} \in \pi_{n_{2}}(X) \equiv \pi_{n_{2}}(E)$ is the image under a homomorphism $H_{n_{1}+n_{2}}(E)$ $\rightarrow \pi_{n_{1}+n_{2}-1}(X)$ of the Pontrjagin product of $h\left(\alpha_{1}\right)$ and $h\left(\alpha_{2}\right)$ in the homology ring $H_{*}(E)$, where $h: \pi_{*}(E) \rightarrow H_{*}(E)$ denotes the Hurewicz homomorphism. Thus, to determine $\left[\alpha_{1}, \alpha_{2}\right]$, it is necessary to know (1) the effect of h on α_{1} and α_{2}, (2) the Pontrjagin product of $h\left(\alpha_{1}\right)$ and $h\left(\alpha_{2}\right)$, (3) the homomorphism $H_{n_{1}+n_{2}}(E) \rightarrow \pi_{n_{1}+n_{2}-1}(X)$.

It is, however, only sometimes possible to find an H-space for which the information (1), (2) and (3) is available. As a first example, consider the classifying space $B U_{t}$ of the unitary group U_{t} and the WP

$$
\pi_{2 r+2}\left(B U_{t}\right) \otimes \pi_{2 s+2}\left(B U_{t}\right) \rightarrow \pi_{2 t+1}\left(B U_{t}\right), t=r+s+1
$$

Here we embed $B U_{t}$ in the H-space $B U_{\infty}$ and note that the required information is known. In this way we obtain a new proof of a theorem of Bott [1]. For a second example suppose $\pi_{i}(X)=0$ for $i<n$ and $n<i<2 n-1$ and $\pi_{n}(X)=\pi$, where n is odd. Then X can be embedded in $K(\pi, n)$. The Pontrjagin square in $H_{2 n}(\pi, n)$ is zero and so $[\alpha, \alpha]=0$ for any $\alpha \in \pi$. This result is due to Meyer and Stein [8] (see also §3).

We actually generalize the preceding method by considering k th order WP's instead of ordinary WP's and by requiring that there exist a pair (E, A) with A operating on E rather than an H-space E. Our main result Theorem 1 then yields for ordinary WP's $(k=2)$ both the assertion of the first paragraph and a theorem of Meyer [4]. For $k>2$ it enables us, in $\S 3$, to extend Bott's theorem by computing k th order WP's in $\pi_{*}\left(B U_{t}\right)$, and to examine in some detail the k th order WP

$$
\pi_{n}(X) \otimes \cdots \otimes \pi_{n}(X) \rightarrow \pi_{k n-1}(X)
$$

when $\pi_{i}(X)=0$ for $i<n$ and $n<i<k n-1$.
Details of these results and other applications will appear elsewhere.

