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1. Introduction. In its simplest form the method for calculating 
the Whitehead product (WP) Tni(X)®Tn%(X)—>Trni+n%-x(X) may be 
described as follows. Suppose X is embedded in an i?-space E so that 
the pair (E, X) has trivial homotopy groups in dimensions <ni+ti2. 
Then we prove that the W P [at, ce2] of ai^Tni(X)^7rWl(E) and 
0L2€z7rnt(X)^wni(E) is the image under a homomorphism Hnx+nt(E) 
-^Tm+m-iiX) of the Pontrjagin product of h(ai) and h(a?) in the 
homology ring H*(E), where h: 7r*(E)—»JH*(E) denotes the Hurewicz 
homomorphism. Thus, to determine [«i, <x2], it is necessary to know 
(1) the effect of h on a\ and ce2, (2) the Pontrjagin product of h(ai) and 
&(a2), (3) the homomorphism Hni+n3(E)—>wni+ns-i(X). 

I t is, however, only sometimes possible to find an iï-space for which 
the information (1), (2) and (3) is available. As a first example, con­
sider the classifying space B Ut of the unitary group Ut and the W P 

7T2r+2(BUt) ® T2*+2(BUt) - * 7T2t+l(BUt), t = T + S + 1. 

Here we embed B Ut in the iï-space B U*> and note that the required 
information is known. In this way we obtain a new proof of a theorem 
of Bott [ l ] . For a second example suppose 7r»(X)=0 for i<n and 
n<i<2n — 1 and wn(X) = w, where n is odd. Then X can be embedded 
in K(w, n). The Pontrjagin square in H2n(7r, n) is zero and so [at a] = 0 
for any aÇzw. This result is due to Meyer and Stein [8] (see also §3). 

We actually generalize the preceding method by considering &th 
order WP's instead of ordinary WP's and by requiring that there exist 
a pair (E, A) with A operating on E rather than an iî-space E. Our 
main result Theorem 1 then yields for ordinary WP's (& = 2) both the 
assertion of the first paragraph and a theorem of Meyer [4], For 
k>2 it enables us, in §3, to extend Bott 's theorem by computing feth 
order WP's in 7r*(BUt), and to examine in some detail the i t h order 
W P 

whenwi(X)=0 iori<nand n<i<kn — l. 
Details of these results and other applications will appear else­

where. 
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