OPEN PROBLEMS ON UNIVALENT AND MULTIVALENT FUNCTIONS ${ }^{1}$

BY A. W. GOODMAN

1. Introduction. Let $f(z)$ be regular in the unit circle ε : $|z|<1$, and represented by the power series

$$
\begin{equation*}
w=f(z)=\sum_{n=0}^{\infty} b_{n} z^{n}=b_{0}+b_{1} z+b_{2} z^{2}+\cdots \tag{1.1}
\end{equation*}
$$

The function f maps \mathcal{E} onto some subdomain \mathcal{S} of a Riemann surface, and S is determined by the sequence $\left\{b_{n}\right\}$ of coefficients in (1.1).

Many questions (both open and settled) can be classified as special cases of the two general questions:

Given a geometric property of δ what can be said about the sequence $\left\{b_{n}\right\}$? Given some information about the sequence $\left\{b_{n}\right\}$, what can be said about the domain s ?

One geometric property of \mathcal{S} is specified by saying that $f(z)$ is univalent in ε. By definition, $f(z)$ is univalent in ε if

$$
\begin{equation*}
f\left(z_{1}\right)=f\left(z_{2}\right), \quad z_{1}, z_{2} \in \varepsilon \Rightarrow z_{1}=z_{2} . \tag{1.2}
\end{equation*}
$$

Briefly, $f(z)$ is univalent in ε if it assumes no value more than once for z in ε. When $f(z)$ is univalent, the image of ε forms a simple domain in the w-plane. The concept of univalence has a natural extension as described in

Definition 1. Let p be a natural number. The function $f(z)$ is said to be p-valent (or multivalent of order p) in ε if the conditions

$$
\begin{equation*}
f\left(z_{1}\right)=f\left(z_{2}\right)=\cdots=f\left(z_{p+1}\right), \quad z_{1}, z_{2}, \cdots, z_{p+1} \in \varepsilon \tag{1.3}
\end{equation*}
$$

imply that $z_{j}=z_{k}$ for some pair such that $j \neq k$, and if there is some w_{0}, such that the equation $f(z)=w_{0}$ has p roots (counted in accordance with their multiplicities) in ε.

In brief, $f(z)$ is p-valent in ε if it assumes no value more than p times in ε, but assumes some value p times in ε. We let $\mathcal{V}(p)$ denote the class of all functions that are regular and p-valent in ε, and have $f(0)=0$.

Certain related classes are also of interest. We let $\Re(p)$ denote the subclass of $V(p)$ of those functions f for which $f(\varepsilon)$ is (in a generalized

[^0]
[^0]: ${ }^{1}$ An expanded version of an address delivered to the Society in Tampa on November 11, 1966, by invitation of the Committee to Select Hour Speakers for the Southeastern Sectional meeting; received by the editors July 11, 1968.

