OPEN PROBLEMS ON UNIVALENT AND MULTIVALENT FUNCTIONS¹

BY A. W. GOODMAN

1. Introduction. Let f(z) be regular in the unit circle $\mathcal{E}: |z| < 1$, and represented by the power series

(1.1)
$$w = f(z) = \sum_{n=0}^{\infty} b_n z^n = b_0 + b_1 z + b_2 z^2 + \cdots$$

The function f maps \mathcal{E} onto some subdomain \mathcal{S} of a Riemann surface, and \mathcal{S} is determined by the sequence $\{b_n\}$ of coefficients in (1.1).

Many questions (both open and settled) can be classified as special cases of the two general questions:

Given a geometric property of S what can be said about the sequence $\{b_n\}$? Given some information about the sequence $\{b_n\}$, what can be said about the domain S?

One geometric property of S is specified by saying that f(z) is univalent in S. By definition, f(z) is univalent in S if

(1.2)
$$f(z_1) = f(z_2), \qquad z_1, z_2 \in \mathcal{E} \Longrightarrow z_1 = z_2.$$

Briefly, f(z) is univalent in \mathcal{E} if it assumes no value more than once for z in \mathcal{E} . When f(z) is univalent, the image of \mathcal{E} forms a *simple* domain in the *w*-plane. The concept of univalence has a natural extension as described in

DEFINITION 1. Let p be a natural number. The function f(z) is said to be p-valent (or multivalent of order p) in \mathcal{E} if the conditions

(1.3)
$$f(z_1) = f(z_2) = \cdots = f(z_{p+1}), \quad z_1, z_2, \cdots, z_{p+1} \in \mathcal{E}$$

imply that $z_j = z_k$ for some pair such that $j \neq k$, and if there is some w_0 , such that the equation $f(z) = w_0$ has p roots (counted in accordance with their multiplicities) in \mathcal{E} .

In brief, f(z) is *p*-valent in \mathcal{E} if it assumes no value more than *p* times in \mathcal{E} , but assumes some value *p* times in \mathcal{E} . We let $\mathcal{U}(p)$ denote the class of all functions that are regular and *p*-valent in \mathcal{E} , and have f(0) = 0.

Certain related classes are also of interest. We let $\mathcal{K}(p)$ denote the subclass of $\mathcal{V}(p)$ of those functions f for which $f(\mathcal{E})$ is (in a generalized

¹ An expanded version of an address delivered to the Society in Tampa on November 11, 1966, by invitation of the Committee to Select Hour Speakers for the Southeastern Sectional meeting; received by the editors July 11, 1968.