DECIDABILITY OF SECOND-ORDER THEORIES AND AUTOMATA ON INFINITE TREES¹

BY MICHAEL O. RABIN

Communicated by Dana Scott, March 21, 1968

1. Introduction. In this note we announce the solvability of the decision problem of the (monadic) second-order theory of two successor functions (S2S). This answers a question raised by Büchi [1].

The above decidability result turns out to be very powerful in that many difficult, often seemingly unrelated, decision problems are reducible to it. Thus we are able to deduce: the decidability of the first-order theory of the lattice of closed subsets of the real line (in answer to Grzegorczyk [6]); the decidability of the second-order theory of countable linearly ordered sets; decidability of theory of countable Boolean algebras with quantification permitted over ideals; and many other results. All the decidability procedures obtained here are elementary recursive in the sense of Kalmar. Due to the fact that we use reductions to a second-order theory, our decidability proofs are very direct. Through appropriate interpretations, the set variables of S2S allow us to talk about all structures in a certain class.

The method of solution involves the development of a theory of finite automata operating on infinite trees. Complete details will be published elsewhere.

1. Theory of *n* successor functions. Let $T = \{0, 1\}^*$ be the set of all finite words on $\{0, 1\}$. The functions $r_0(x) = x0$, $r_1(x) = x1$, $x \in T$, are called the *successor functions*. On *T* define the relation $x \leq y \equiv \exists z [y = xz]$; and the lexicographic total ordering $x \leq y \equiv x \leq y \\ \forall \exists z \exists u \exists v [x = z0u \land y = z1v].$

Let Λ denote the empty sequence. A path π of T is a subset $\pi \subset T$ such that (1) $\Lambda \subset \pi$; (2) for each $x \subset \pi$, either $x \in \pi$ or $x \in \pi$; (3) for each $\Lambda \neq x \subset \pi$, the predecessor node y of x is in π .

For \mathfrak{M} a structure and L a formal language, $\operatorname{Th}(\mathfrak{M}, L)$ will denote the theory of \mathfrak{M} in the language L. If \mathfrak{K} is a class of similar structures, then $\operatorname{Th}(\mathfrak{K}, L) = \bigcap_{\mathfrak{M} \in \mathfrak{K}} \operatorname{Th}(\mathfrak{M}, L)$. If L is (monadic) second-order, then we denote $\operatorname{Th}(\mathfrak{M}, L)$ by $\operatorname{Th}_2(\mathfrak{M})$. If L' is second-order and the set variables are restricted to range over finite subsets of the domain, then $\operatorname{Th}(\mathfrak{M}, L')$ is called the *weak second-order theory* of \mathfrak{M} .

¹ Presented to the American Mathematical Society, July 5, 1967.