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1. Introduction. In this note we announce the solvability of the 
decision problem of the (monadic) second-order theory of two suc­
cessor functions (S2S). This answers a question raised by Büchi [ l ] . 

The above decidability result turns out to be very powerful in that 
many difficult, often seemingly unrelated, decision problems are re­
ducible to it. Thus we are able to deduce: the decidability of the 
first-order theory of the lattice of closed subsets of the real line (in 
answer to Grzegorczyk [ó]); the decidability of the second-order 
theory of countable linearly ordered sets; decidability of theory of 
countable Boolean algebras with quantification permitted over ideals; 
and many other results. All the decidability procedures obtained here 
are elementary recursive in the sense of Kalmar. Due to the fact that 
we use reductions to a second-order theory, our decidability proofs 
are very direct. Through appropriate interpretations, the set vari­
ables of S2S allow us to talk about all structures in a certain class. 

The method of solution involves the development of a theory of 
finite automata operating on infinite trees. Complete details will be 
published elsewhere. 

1. Theory of n successor functions. Let T= {0, 1}* be the set of 
all finite words on {0, 1}. The functions r0(x) =#0, r\(x) =xl, x£:T, 
are called the successor functions. On T define the relation x^y 
= 3z[3/=#;&]; and the lexicographic total ordering x^y=x£*y 
V 3* 3u lv[x = zOuAy = zlv]. 

Let A denote the empty sequence. A path w of T is a subset TT C T 
such that (1) AG?r; (2) for each x E x , either XO^T or x l£7r ; (3) for 
each A?*X£;T, the predecessor node y of x is in w. 

For 9ft a structure and L a formal language, Th(9W, L) will denote 
the theory of 33Î in the language L. If 3C is a class of similar structures, 
then Th(3C, L) = flatted Th(9ft, L). If L is (monadic) second-order, 
then we denote Th(3W, L) by Th2(9K). If V is second-order and the 
set variables are restricted to range over finite subsets of the domain, 
then Th(2ïî, V) is called the weak second-order theory of 2)î. 

1 Presented to the American Mathematical Society, July 5, 1967. 
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