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In this note we characterize the maximal left ideals in certain tensor 
products of complex Banach algebras. Although our methods are 
different, the results presented here resemble results of Gelbaum 
[ l ] , [2] that characterize the maximal two-sided ideals in the greatest 
cross norm tensor product of Banach algebras. 

Let A be a commutative Banach algebra with identity 1, and let B 
be an arbitrary Banach algebra with identity e. I t follows from the 
universal property [3, p. 181] of the algebraic tensor product A ®B 
that if M is a maximal ideal of Ay then M induces a homomorphism 
h M of A ® B onto B by the formula 

hM 2£a« ® hi = 2X(M)bi. 

In all that follows we denote by Ct the completion of A ®B in some 
cross norm such that each homomorphism KM is bounded, hence has a 
unique extension to Ofc. The greatest cross norm has this property. 
When A is semisimple, another cross norm with this property is the 
sup norm 

|| 2>,®ft,|| = sup || 2>,(JO&<||-

With these conventions understood the main result can be stated 
as follows. 

THEOREM. A subset £ of a is a maximal left ideal if and only if A 
contains a maximal ideal M and B contains a maximal left ideal L such 
that <£ = fei1(L). 

PROOF. T O prove the sufficiency, let us suppose £ has the desired 
form and that £' is a left ideal which properly contains <£. Because 
hM is onto B, hM(£') is a left ideal which properly contains L. Since 
L is maximal in B, it follows that there is an element x in £f such that 
hM{x) —e. Now x — 1 ®e belongs to the kernel of hj^ which is contained 
in «C', thus 1 ® e belongs to £' and so <£' = Ct, proving that £ is maximal. 
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