THE IMPOSSIBILITY OF DESUSPENDING COLLAPSES

BY W. B. R, LICKORISH AND J, M. MARTIN ${ }^{1}$
Communicated by R. H. Bing, April 8, 1968

It is known that in order to prove the polyhedral Schoenflies conjecture in all dimensions, it is enough to show that, if $\left(B^{4}, B^{3}\right)$ is a $(4,3)$ ball pair, then B^{4} collapses (polyhedrally) to B^{3}. Recently, using the solution to the polyhedral Poincaré conjecture in high dimensions, Husch has shown [3] that if $\left(B^{7}, B^{6}\right)$ is a $(7,6)$ ball pair, then B^{7} collapses to B^{6}. It is tempting to try to prove that B^{4} collapses to B^{3} by invoking the following conjecture.

Conjecture A. If M is a polyhedral manifold, L a submanifold of M and $S(M) \searrow S(L)$, then $M \searrow L$. $(S(X)$ denotes the suspension of X and " \searrow " denotes a polyhedral collapse.)
If Conjecture A were true we could suspend a $(4,3)$ ball pair three times to obtain a $(7,6)$ ball pair, use Husch's result, and then apply Conjecture A three times in order to desuspend the collapse.
In this note we present a counterexample to Conjecture A, and discuss other conjectures related to the problem of desuspending collapses.

Example 1. Let M^{4} be a polyhedral 4-manifold, as described in [4] or [5], with the following properties. (a) M^{4} is contractible, (b) $\pi_{1}(\partial M) \neq 0$, (c) $M^{4} \times I \cong B^{5}$. Consider $S\left(M^{4}\right)$ as $M^{4} \times I$ together with a cone on $M^{4} \times\{0\}$ and another cone on $M^{4} \times\{1\}$. Thus if v_{0} and v_{1} are the vertices of these cones,

$$
S\left(M^{4}\right)=\left(M^{4} \times I\right) \cup\left(v_{0} *\left(M^{4} \times\{0\}\right)\right) \cup\left(v_{1} *\left(M^{4} \times\{1\}\right)\right) .
$$

Now let B^{3} be a 3 -ball in ∂M^{4}. Since $M^{4} \times I$ is a 5 -ball, with $B^{3} \times I$ as a face, there is an elementary collapse

$$
M^{4} \times I \searrow\left(M^{4} \times\{0\}\right) \cup\left(M^{4} \times\{1\}\right) \cup\left[\left(\partial M^{4}-\operatorname{int} B^{3}\right) \times I\right],
$$

Thus there is a collapse

$$
S\left(M^{4}\right) \searrow\left(v_{0} *\left(M^{4} \times\{0\}\right)\right) \cup\left(v_{1} *\left(M^{4} \times\{1\}\right)\right) \cup\left(\left(\partial M^{4}-\operatorname{int} B^{3}\right) \times \mathrm{I}\right),
$$

Now, by collapsing conewise $v_{i} *\left(M^{4} \times\{i\}\right)$ to $v_{i} *\left(\left(\partial M^{4}-\operatorname{int} B^{3}\right)\right.$ $\times\{i\})$, for $i=0$ and 1 , we have $S\left(M^{4}\right) \backslash S\left(\partial M^{4}-\operatorname{int} B^{3}\right)$. However, since $\pi_{1}\left(M^{4}\right)=0$ and $\pi_{1}\left(\partial M^{4}-\operatorname{int} B^{3}\right) \neq 0, M^{4} X \partial M^{4}-\operatorname{int} B^{3}$. This provides a counter-example to Conjecture A.

Remark 1. By taking two copies of the above manifold, M_{1} and

[^0]
[^0]: ${ }^{1}$ This paper was written while the second author was a fellow of the Alfred P. Sloan Foundation.

