THE IMPOSSIBILITY OF DESUSPENDING COLLAPSES

BY W. B. R. LICKORISH AND J. M. MARTIN¹

Communicated by R. H. Bing, April 8, 1968

It is known that in order to prove the polyhedral Schoenflies conjecture in all dimensions, it is enough to show that, if (B^4, B^3) is a (4, 3) ball pair, then B^4 collapses (polyhedrally) to B^3 . Recently, using the solution to the polyhedral Poincaré conjecture in high dimensions, Husch has shown [3] that if (B^7, B^6) is a (7, 6) ball pair, then B^7 collapses to B^6 . It is tempting to try to prove that B^4 collapses to B^3 by invoking the following conjecture.

CONJECTURE A. If M is a polyhedral manifold, L a submanifold of M and $S(M) \searrow S(L)$, then $M \searrow L$. (S(X) denotes the suspension of X and " \searrow " denotes a polyhedral collapse.)

If Conjecture A were true we could suspend a (4, 3) ball pair three times to obtain a (7, 6) ball pair, use Husch's result, and then apply Conjecture A three times in order to desuspend the collapse.

In this note we present a counterexample to Conjecture A, and discuss other conjectures related to the problem of desuspending collapses.

EXAMPLE 1. Let M^4 be a polyhedral 4-manifold, as described in [4] or [5], with the following properties. (a) M^4 is contractible, (b) $\pi_1(\partial M) \neq 0$, (c) $M^4 \times I \cong B^5$. Consider $S(M^4)$ as $M^4 \times I$ together with a cone on $M^4 \times \{0\}$ and another cone on $M^4 \times \{1\}$. Thus if v_0 and v_1 are the vertices of these cones,

 $S(M^4) = (M^4 \times I) \cup (v_0 * (M^4 \times \{0\})) \cup (v_1 * (M^4 \times \{1\})).$

Now let B^3 be a 3-ball in ∂M^4 . Since $M^4 \times I$ is a 5-ball, with $B^3 \times I$ as a face, there is an elementary collapse

 $M^4 \times I \searrow (M^4 \times \{0\}) \cup (M^4 \times \{1\}) \cup [(\partial M^4 - \operatorname{int} B^3) \times I],$

Thus there is a collapse

$$S(M^4) \searrow (v_0 * (M^4 \times \{0\})) \cup (v_1 * (M^4 \times \{1\})) \cup ((\partial M^4 - \operatorname{int} B^3) \times I).$$

Now, by collapsing conewise $v_i * (M^4 \times \{i\})$ to $v_i * ((\partial M^4 - \operatorname{int} B^3) \times \{i\})$, for i = 0 and 1, we have $S(M^4) \setminus S(\partial M^4 - \operatorname{int} B^3)$. However, since $\pi_1(M^4) = 0$ and $\pi_1(\partial M^4 - \operatorname{int} B^3) \neq 0$, $M^4 \times \partial M^4 - \operatorname{int} B^3$. This provides a counter-example to Conjecture A.

REMARK 1. By taking two copies of the above manifold, M_1 and

 $^{^{1}}$ This paper was written while the second author was a fellow of the Alfred P. Sloan Foundation.