NOTE ON PRINCIPAL S*-BUNDLES

BY PETER HILTON AND JOSEPH ROITBERG Communicated by E. H. Brown, Jr., May 6, 1968

In this note we construct two principal S^3 -bundles whose total spaces E_{α} , E_{β} are closed smooth manifolds having the properties

- (i) E_{α} , E_{β} are of different homotopy types, $E_{\alpha} \not\simeq E_{\beta}$;
- (ii) $E_{\alpha} \times S^3$, $E_{\beta} \times S^3$ are diffeomorphic.

The method of construction is a modified dual of that employed in [1] to demonstrate the failure of wedge-cancellation.

Let $a, b \in \pi_n(S^3)$, let B be the classifying space for S^3 , and let $\alpha, \beta \in \pi_{n+1}(B)$ be the elements corresponding to a, b respectively. Let $\pi_a : E_a \to S^{n+1}, \pi_B : E_B \to S^{n+1}$ be the bundle projections induced by α, β .

THEOREM 1. $E_{\alpha} \simeq E_{\beta}$ if and only if $\beta = \pm \alpha$ (equivalently, $b = \pm a$).

PROOF. Sufficiency is obvious, so we suppose $E_{\alpha} \simeq E_{\beta}$ and seek to prove $\beta = \pm \alpha$. If $n \leq 2$, the assertion is trivial. Now there are cell-decompositions

$$E_{\alpha} = S^{3} \cup_{a} e^{n+1} \cup e^{n+4}, \qquad E_{\beta} = S^{3} \cup_{b} e^{n+1} \cup e^{n+4}.$$

Thus if n=3, a and b are integers and $H_3(E_\alpha)=Z_{|a|}$, $H_3(E_\beta)=Z_{|b|}$, whence |a|=|b|. We assume now that $n \ge 4$ and let $h: E_\alpha \simeq E_\beta$. We may suppose $h(S^3) \subseteq S^3$ and then $h|S^3$ is of degree ± 1 . From the exact homotopy sequence we infer that h induces an isomorphism $\pi_{n+1}(E_\alpha, S^3) \cong \pi_{n+1}(E_\beta, S^3)$; these groups are cyclic infinite, generated by i_α , i_β say, so that $h_*(i_\alpha) = \pm i_\beta$. We have a commutative square

$$\pi_{n+1}(E_{\alpha}, S^{3}) \stackrel{h_{*}}{\cong} \pi_{n+1}(E_{\beta}, S^{3})$$

$$\downarrow \partial \qquad \qquad \downarrow \partial$$

$$\pi_{n}(S^{3}) \cong \qquad \pi_{n}(S^{8})$$

where the bottom isomorphism is multiplication by ± 1 , $\partial(i_{\alpha}) = a$, $\partial(i_{\beta}) = b$. Thus $\pm b = \pm a$ or $\beta = \pm \alpha$.

Let $E_{\alpha\beta} \to E_{\alpha}$ be induced from π_{β} by $\pi_{\alpha} : E_{\alpha} \to S^{n+1}$, and let $E_{\beta\alpha} \to E_{\beta}$ be defined similarly.

THEOREM 2. $E_{\alpha\beta} = E_{\beta\alpha}$. Moreover, $E_{\alpha\beta}$ is equivalent to $E_{\alpha} \times S^{3}$ if $\beta \circ \pi_{\alpha} = 0$ and $E_{\beta\alpha}$ is equivalent to $E_{\beta} \times S^{3}$ if $\alpha \circ \pi_{\beta} = 0$.

¹ Here and later we deliberately confuse maps and homotopy classes.