NOTE ON PRINCIPAL S^{3}-BUNDLES

BY PETER HILTON AND JOSEPH ROITBERG

Communicated by E. H. Brown, Jr., May 6, 1968
In this note we construct two principal S^{3}-bundles whose total spaces E_{α}, E_{β} are closed smooth manifolds having the properties
(i) E_{α}, E_{β} are of different homotopy types, $E_{\alpha} \nsim E_{\beta}$;
(ii) $E_{\alpha} \times S^{3}, E_{\beta} \times S^{3}$ are diffeomorphic.

The method of construction is a modified dual of that employed in [1] to demonstrate the failure of wedge-cancellation.

Let $a, b \in \pi_{n}\left(S^{3}\right)$, let B be the classifying space for S^{3}, and let α, β $\in \pi_{n+1}(B)$ be the elements corresponding to a, b respectively. Let $\pi_{\alpha}: E_{\alpha} \rightarrow S^{n+1}, \pi_{\beta}: E_{\beta} \rightarrow S^{n+1}$ be the bundle projections induced by ${ }^{1} \alpha, \beta$.

Theorem 1. $E_{\alpha} \simeq E_{\beta}$ if and only if $\beta= \pm \alpha$ (equivalently, $b= \pm a$).
Proof. Sufficiency is obvious, so we suppose $E_{\alpha} \simeq E_{\beta}$ and seek to prove $\beta= \pm \alpha$. If $n \leqq 2$, the assertion is trivial. Now there are celldecompositions

$$
E_{\alpha}=S^{3} \cup_{a} e^{n+1} \cup e^{n+4}, \quad E_{\beta}=S^{3} \cup_{b} e^{n+1} \cup e^{n+4}
$$

Thus if $n=3, a$ and b are integers and $H_{3}\left(E_{\alpha}\right)=Z_{|a|}, H_{3}\left(E_{\beta}\right)=Z_{|b|}$, whence $|a|=|b|$. We assume now that $n \geqq 4$ and let $h: E_{\alpha} \simeq E_{\beta}$. We may suppose $h\left(S^{3}\right) \subseteq S^{3}$ and then $h \mid S^{3}$ is of degree ± 1. From the exact homotopy sequence we infer that h induces an isomorphism $\pi_{n+1}\left(E_{\alpha}, S^{3}\right) \cong \pi_{n+1}\left(E_{\beta}, S^{3}\right)$; these groups are cyclic infinite, generated by i_{α}, i_{β} say, so that $h_{*}\left(i_{\alpha}\right)= \pm i_{\beta}$. We have a commutative square

$$
\begin{array}{ccc}
\pi_{n+1}\left(E_{\alpha}, S^{3}\right) & \stackrel{h_{*}}{\cong} \pi_{n+1}\left(E_{\beta}, S^{3}\right) \\
\downarrow \partial & \downarrow \partial \\
\pi_{n}\left(S^{3}\right) & \cong & \pi_{n}\left(S^{3}\right)
\end{array}
$$

where the bottom isomorphism is multiplication by $\pm 1, \partial\left(i_{\alpha}\right)=a$, $\partial\left(i_{\beta}\right)=b$. Thus $\pm b= \pm a$ or $\beta= \pm \alpha$.

Let $E_{\alpha \beta} \rightarrow E_{\alpha}$ be induced from π_{β} by $\pi_{\alpha}: E_{\alpha} \rightarrow S^{n+1}$, and let $E_{\beta \alpha} \rightarrow E_{\beta}$ be defined similarly.

Theorem 2. $E_{\alpha \beta}=E_{\beta \alpha}$. Moreover, $E_{\alpha \beta}$ is equivalent to $E_{\alpha} \times S^{3}$ if $\beta \circ \pi_{\alpha}=0$ and $E_{\beta \alpha}$ is equivalent to $E_{\beta} \times S^{3}$ if $\alpha \circ \pi_{\beta}=0$.

[^0]
[^0]: ${ }^{1}$ Here and later we deliberately confuse maps and homotopy classes.

