CELL-LIKE MAPPINGS OF ANR'S

BY R. C. LACHER ${ }^{1}$
Communicated by N. Steenrod, April 24, 1968

We introduce here the concept of "cell-like" mappings, i.e. mappings with "cell-like" inverse sets (definition below). For maps of ANR's, this concept is the natural generalization of cellular maps of manifolds (see (3) below). Also, a proper mapping of ANR's is celllike if, and only if, the restriction to any inverse open set is a proper homotopy equivalence. This latter condition is one studied by Sullivan in connection with the Hauptvermutung (see [8]).

Definition. A space A is cell-like if there is an embedding ϕ of A into some manifold M such that $\phi(A)$ is cellular in M (see [3]). A mapping $f: X \rightarrow Y$ is cell-like if $f^{-1}(y)$ is a cell-like space for each $y \in Y$.

The following technical property is useful in studying cell-like spaces.

Property (**). A map $\phi: A \rightarrow X$ has Property (**) if, for each open set U of X containing $\phi(A)$, there is an open set V of X, with $\phi(A) \subset V \subset U$, such that the inclusion $V \subset U$ is null-homotopic (in U).

The above terminology arose in generalizing McMillan's cellularity criterion [6] to hold for cell-like spaces. S. Armentrout [1] has independently studied this property, calling it "property $U V \infty$ ".

To avoid confusion, we will assume that an ANR is a retract of a neighborhood of euclidean space R^{n}.

Theorem 1. Let A be a compact, finite-dimensional metric space. Then the following are equivalent:
(a) A is cell-like.
(b) A has the "fundamental shape" or "Cech homotopy type" of a point, as defined by Borsuk in [2].
(c) There exists an embedding of A into some $A N R$ which has Property (**).
(d) Any embedding of A into any $A N R$ has Property (**).

Working independently and from a different point of view, Armentrout has obtained results quite similar to Theorem 1. The proof is not hard. The implications $(a) \Rightarrow(b) \Rightarrow(c) \Rightarrow(d)$ make use only of elementary properties of ANR's; $(d) \Rightarrow(a)$ is easy using [6].

[^0]
[^0]: ${ }^{1}$ Supported by the National Science Foundation grant GP-7952X.

