GLOBAL SOLUTIONS OF HYPERBOLIC SYSTEMS OF CONSERVATION LAWS IN TWO DEPENDENT VARIABLES

BY J. L. JOHNSON AND J. A. SMOLLER¹

Communicated by J. K. Moser, March 28, 1968

We are interested in general hyperbolic systems of the form

(1)
$$u_t + f(u, v)_x = 0, \quad v_t + g(u, v)_x = 0$$

with initial data

(2)
$$(v(0, x), u(0, x)) = (v_0(x), u_0(x)).$$

The vector U = (v, u) is a function of t and $x, t \ge 0, -\infty < x < \infty$, and the functions f and g are C^2 functions of two real variables. We assume that the system (1) is hyperbolic in some open set \mathfrak{U} in the v-u plane, with $f_v g_u > 0$. Let DF(U) and $D^2F(U)$ denote respectively the first and second Fréchet derivatives (see [2]) of the vector function $F = (f, g): \mathfrak{U} \rightarrow R^2$; and let $r_j(U), j = 1, 2$; be the eigenvectors of DF(U), with orthogonal vectors $l_j(U), j = 1, 2$: $l_i(U)r_j(U) = 0$ for $i \neq j$.

THEOREM 1. Let the system (1) be hyperbolic in an open set \mathfrak{U} in the v-u plane. Then (a) the system (1) is genuinely nonlinear in the jth characteristic field at $U \in \mathfrak{U}$ (see Lax [6]) if and only if

$$l_j(U)D^2F(U)[r_j(U), r_j(U)] \neq 0;$$

(b) the system (1) satisfies the Glimm-Lax shock interaction condition (condition (c) of [4]) in \mathfrak{U} provided that left eigenvectors $l_j(U)$ can be chosen so that

$$l_j(U)D^2F(U)[r_k(U), r_k(U)] > 0, \quad j, k = 1, 2, j \neq k, U \in \mathfrak{U}.$$

The Glimm-Lax shock interaction condition states that the interaction of two shocks of one family produces a shock of the same family and a rarefaction wave of the opposite family. Moreover, for sufficiently weak shocks, we are able to prove an analogous theorem for $n \times n$ systems of conservation laws, $n \ge 2$, which locally admit Riemann invariants. The proof of it uses some ideas in [3].

We assume that the system (1) is genuinely nonlinear in \mathfrak{U} , and we normalize r_j by $D\lambda_j(U)[r_j(U)] > 0$, j=1, 2, where $\lambda_j = \lambda_j(U)$ is the eigenvalue asociated with $r_j, \lambda_2 > \lambda_1$. We then normalize l_j by $l_jr_j > 0$,

¹ Research supported by NSF research contract No. GP-7445.