ON SIMPLE GROUPS OF ORDER $5 \cdot 3^{a} \cdot 2^{b}$

BY RICHARD BRAUER ${ }^{1}$
Communicated by W. Feit, April 29, 1968

The following theorem can be proved.
Theorem. If G is a simple group of an order g of the form $g=5 \cdot 3^{a} \cdot 2^{b}$, $g \neq 5$, then G is isomorphic to one of the alternating groups A_{5}, A_{6}, or to the group $O_{5}(3)$ of order 25,920.

One may conjecture that there exist only finitely many nonisomorphic noncyclic groups whose order g is divisible by exactly three distinct primes $p<q<r$. J. G. Thompson [6] has shown that then $p=2, q=3$ while r is $5,7,13$, or 17 . It is not unlikely that if one of the exponents a, b, c is 1 , the methods applied here can be used to find all simple groups of the orders in question. No example is known in which all three exponents a, b, c are larger than 1 .

Since the proof of the theorem is long, we do not intend to publish it. A complete account has been prepared in mimeographed form. ${ }^{2}$ We shall give a brief outline.

1. We start with two propositions of slightly more general interest.

Proposition 1. Let G be a simple group of an order $g=p^{a} q^{b} r^{c}$ where p, q, r are distinct primes. Assume that the Sylow-subgroup R of G of order r^{c} is cyclic. Then R is self-centralizing in $G ; C(R)=R$.

Proof. If this was false, we may assume that $C(R)$ contains an element π of order p, (interchanging p and q, if necessary). Then, for $R=\langle\rho\rangle$,

$$
\sum \chi_{j}(\pi \rho) \chi_{j}(1)=0
$$

where χ_{j} ranges over the irreducible characters of G in the principal p-block $B_{0}(p)$. It follows that there exists a nonprincipal character $\chi_{i} \in B_{0}(p)$ such that

$$
\begin{equation*}
\chi_{j}(1) \not \equiv 0(\bmod q), \quad \chi_{j}(\pi \rho) \neq 0 \tag{1}
\end{equation*}
$$

If here χ_{j} belongs to the r-block $B(r)$, the second condition (1) implies that ρ belongs to a defect group D of $B(r)$, cf. [2]. Thus, $D=R$. It

[^0]
[^0]: ${ }^{1}$ This research has been supported by an N.S.F. Grant.
 ${ }^{2}$ This report can be obtained on request from the Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138.

