Thirdly it follows easily from these observations and the residual nilpotence of free groups that G is parafree of rank r.

Finally we observe that G is not finitely generated, but that $G / \gamma_{2} G$ is free abelian of rank two. Hence G is not free.

References

1. G. Baumslag, Groups with the same lower central sequence as a relatively free group. I: The groups, Trans. Amer. Math. Soc. 129 (1967), 308-321.
2. ——, Some groups that are just about free, Bull. Amer. Math. Soc. 73 (1967), 621-622.

Graduate Center, The City University of New York

SOLVABLE AND NILPOTENT SUBALGEBRAS OF LIE ALGEBRAS

BY DAVID J. WINTER ${ }^{1}$
Communicated by G. B. Seligman, February 21, 1968

1. Introduction. We describe here some results on the structure of a Lie algebra in terms of its nilpotent and solvable subalgebras. Proofs will appear elsewhere.

In the following discussions, F is an arbitrary field, \mathcal{L} is a (finite dimensional) Lie algebra over F and V is a (finite dimensional) vector space over F.
2. Arbitrary Lie algebras. Let \mathfrak{T} be a set of linear transformations in V such that the Lie algebra generated by \Re over F is nilpotent. Then, as is well known, V has a unique vector space decomposition $V=V_{0}(\mathfrak{Y})+V_{*}(\mathfrak{H})$ (direct) where $V_{*}(\mathfrak{N})$ is \mathfrak{N}-stable, $V_{0}(\mathfrak{N})$ is \mathfrak{N}-stable and $\left.\mathfrak{N}\right|_{V_{0}(\mathscr{r})}$ consists of nilpotent transformations, and where $V_{0}(\mathscr{O})$ is maximal with respect to the latter two properties.

One has the following theorem, in spite of the fact that a nilpotent linear Lie algebra cannot always be triangulized over the algebraic closure of its base field.

Theorem 1. ${ }^{2}$ If F is infinite and \mathfrak{N} is a subspace of $\operatorname{Hom}_{F}(V, V)$ such that the Lie algebra generated by \mathfrak{N} is nilpotent, then there exists N in \mathfrak{N} such that $V_{0}(N)=V_{0}(\mathfrak{r})$.

[^0]
[^0]: ${ }^{1}$ This research was done while the author was a National Science Foundation Postdoctoral Research Fellow at the University of Bonn.
 ${ }^{2}$ This is essentially Lemma 3.5 of [4, pp. 87-88]. The author has heard that an independent forthcoming paper of R. Block contains material close to this theorem.

