A UNIFORM GENERALIZED SCHOENFLIES THEOREM

BY PERRIN WRIGHT¹

Communicated by O. G. Harrold, February 13, 1968

The generalized Schoenflies theorem of M. Brown [2], [3] can be restated in the following way: If S^{n-1} is the equator of S^n , then any locally flat embedding $f: S^{n-1} \rightarrow S^n$ can be extended to a homeomorphism $F: S^n \rightarrow S^n$.

The purpose of this paper is to show that, if $n \ge 5$, the extension F can be constructed in a controlled manner; in particular, if $f:S^{n-1} \rightarrow S^n$ is close to the inclusion embedding, then $F: S^n \rightarrow S^n$ can be chosen to be close to the identity homeomorphism. Consequently if, $f, g:S^{n-1} \rightarrow S^n$ are locally flat embeddings, $n \ge 5$, and f is close to g, then there is a homeomorphism $H: S^n \rightarrow S^n$ which is close to the identity such that Hf = g.

Let S^{n-1} denote the unit sphere in E^n , B^n the unit ball, and O the origin. If x, y belong to $E^n - O$, let $\theta(x, y)$ denote the angle in radians between the line segments Ox and Oy, measured such that $0 \leq \theta(x, y) \leq \pi$. The distance between x and y under the Euclidean metric will be denoted by dist (x, y). If A is a subset of $E^n - O$, the angular diameter of A, written θ diam A, is defined to be $\sup_{x,y \in A} \theta(x, y)$. This is significant whenever A lies in a half-space.

Now suppose S is a locally flatly embedded (n-1)-sphere in E^n which approximates the standard sphere S^{n-1} . Suppose $\phi: S^{n-1} \times [0, 1] \rightarrow Cl(Ext S)$ is a collar on S in Cl(Ext S). If the collar is small, then the θ -diameter of each fiber $\phi(x \times [0, 1])$ is also small. The object of Lemma 2 is to push the collar outward, leaving S fixed, so that its two boundary components are separated by a round sphere with center at O, and so that the θ -diameter of each fiber remains small. The precise statement is as follows.

LEMMA 2. If $f: S^{n-1} \rightarrow E^n$, $n \ge 5$, is a locally flat embedding such that for all $x \in S^{n-1}$, $\theta(x, f(x)) < \epsilon$, where $\epsilon < \pi/7$, then there is an embedding $F: S^{n-1} \times [0, 1] \rightarrow Cl(Ext f(S^{n-1}))$ such that:

(1) F(x, 0) = f(x),

(2) $F(S^{n-1}\times 0)$ and $F(S^{n-1}\times 1)$ are separated by some round sphere with center at O,

(3) For all $x \in S^{n-1}$, $t \in [0, 1]$, $\theta(x, F(x, t)) < 13n\epsilon/2 + 15\epsilon$.

¹ Work on this paper was supported by the National Science Foundation under NSF G5458.