A UNIFORM GENERALIZED SCHOENFLIES THEOREM

BY PERRIN WRIGHT ${ }^{1}$

Communicated by O. G. Harrold, February 13, 1968

The generalized Schoenflies theorem of M. Brown [2], [3] can be restated in the following way: If S^{n-1} is the equator of S^{n}, then any locally flat embedding $f: S^{n-1} \rightarrow S^{n}$ can be extended to a homeomorphism $F: S^{n} \rightarrow S^{n}$.
The purpose of this paper is to show that, if $n \geqq 5$, the extension F can be constructed in a controlled manner; in particular, if $f: S^{n-1} \rightarrow S^{n}$ is close to the inclusion embedding, then $F: S^{n} \rightarrow S^{n}$ can be chosen to be close to the identity homeomorphism. Consequently if, $f, g: S^{n-1} \rightarrow S^{n}$ are locally flat embeddings, $n \geqq 5$, and f is close to g, then there is a homeomorphism $H: S^{n} \rightarrow S^{n}$ which is close to the identity such that $H f=g$.
Let S^{n-1} denote the unit sphere in E^{n}, B^{n} the unit ball, and O the origin. If x, y belong to $E^{n}-O$, let $\theta(x, y)$ denote the angle in radians between the line segments $O x$ and $O y$, measured such that $0 \leqq \theta(x, y) \leqq \pi$. The distance between x and y under the Euclidean metric will be denoted by dist (x, y). If A is a subset of $E^{n}-O$, the angular diameter of A, written $\theta \operatorname{diam} A$, is defined to be $\sup _{x, y \in A} \theta(x, y)$. This is significant whenever A lies in a half-space.

Now suppose S is a locally flatly embedded ($n-1$)-sphere in E^{n} which approximates the standard sphere S^{n-1}. Suppose $\phi: S^{n-1}$ $\times[0,1] \rightarrow \mathrm{Cl}(\operatorname{Ext} S)$ is a collar on S in $\mathrm{Cl}(\operatorname{Ext} S)$. If the collar is small, then the θ-diameter of each fiber $\phi(x \times[0,1])$ is also small. The object of Lemma 2 is to push the collar outward, leaving S fixed, so that its two boundary components are separated by a round sphere with center at O, and so that the θ-diameter of each fiber remains small. The precise statement is as follows.

Lemma 2. If $f: S^{n-1} \rightarrow E^{n}, n \geqq 5$, is a locally fat embedding such that for all $x \in S^{n-1}, \theta(x, f(x))<\epsilon$, where $\epsilon<\pi / 7$, then there is an embedding $F: S^{n-1} \times[0,1] \rightarrow \mathrm{Cl}\left(\operatorname{Ext} f\left(S^{n-1}\right)\right)$ such that:
(1) $F(x, 0)=f(x)$,
(2) $F\left(S^{n-1} \times 0\right)$ and $F\left(S^{n-1} \times 1\right)$ are separated by some round sphere with center at O,
(3) For all $x \in S^{n-1}, t \in[0,1], \theta(x, F(x, t))<13 n \epsilon / 2+15 \epsilon$.

[^0]
[^0]: ${ }^{1}$ Work on this paper was supported by the National Science Foundation under NSF G5458.

