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1. Stochastic quadrature formulas. In the simplest "Monte 
Carlo" scheme for numerically approximating the integral 

(1) / = f f(x)dx 

(G8 is the closed unit cube in Ea), N points xi, • • • , xN are chosen at 
random in G8 and the quantity 

1 N 

N M 

is taken as an estimate of / . The error analysis is probabilistic. Re
garding the Xi as (pairwise) independent random variables uniformly 
distributed on G8f Jo is a random variable with mean / ; the amount 
by which it is apt to differ from I is estimated in terms of its standard 
deviat ions (Jo). In general (îorf&L2(Gs)), 

and it is usual to consider 3cr (or even 2cr) as a reliable upper bound on 

Let D" denote the set of real functions ƒ such that 

/Ytf1, X2, ' • • , X8) 
(Ox1)*" • • • (da?)* 

is continuous on G8 whenever mf ^2, • • • , n8^n. N. S. Bahvalov [ l ] , 
in a study of lower bounds on quadrature errors showed that for the 
class D" the error of any nonrandom (e.g. Newton-Cotes, Gaussian) 
quadrature method is Q(N-nls) ;x for random methods the best he 
could show was (r = Ö(i\Mn/s+1/2)) and he showed that for the set of 
periodic functions in D* there in fact exist methods for which <r 
= 0(iV- (w/s+1/2)). 

In this note I shall give a general description of a class of formulas 
which combine the Monte Carlo and classical approaches to get 

1 Hardy's notation: ƒ=0(g) iff g = 0(f). 
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