A COMBINATION OF MONTE CARLO AND CLASSICAL METHODS FOR EVALUATING MULTIPLE INTEGRALS

BY SEYMOUR HABER

Communicated by E. Isaacson, February 29, 1968

1. Stochastic quadrature formulas. In the simplest "Monte Carlo" scheme for numerically approximating the integral

(1)
$$I = \int_{G_{\bullet}} f(\mathbf{x}) d\mathbf{x}$$

(G_s is the closed unit cube in E^s), N points x_1, \dots, x_N are chosen at random in G_s and the quantity

$$J_0 = \frac{1}{N} \sum_{i=1}^N f(\mathbf{x}_i)$$

is taken as an estimate of I. The error analysis is probabilistic. Regarding the \mathbf{x}_i as (pairwise) independent random variables uniformly distributed on G_s , J_0 is a random variable with mean I; the amount by which it is apt to differ from I is estimated in terms of its standard deviation $\sigma(J_0)$. In general (for $f \in L^2(G_s)$),

$$\sigma(J_0) = C_0(f) N^{-1/2};$$

and it is usual to consider 3σ (or even 2σ) as a reliable upper bound on |J-I|.

Let D_s^n denote the set of real functions f such that

$$\frac{\partial^{n_1+\cdots+n_s}}{(\partial x^1)^{n_1}\cdots(\partial x^s)^{n_s}}f(x^1,x^2,\cdots,x^s)$$

is continuous on G_s whenever $n_1, n_2, \dots, n_s \leq n$. N. S. Bahvalov [1], in a study of lower bounds on quadrature errors showed that for the class D_s^n the error of any nonrandom (e.g. Newton-Cotes, Gaussian) quadrature method is $\Omega(N^{-n/s})$;¹ for random methods the best he could show was $\sigma = \Omega(N^{-(n/s+1/2)})$ and he showed that for the set of periodic functions in D_s^n there in fact exist methods for which σ $= O(N^{-(n/s+1/2)})$.

In this note I shall give a general description of a class of formulas which combine the Monte Carlo and classical approaches to get

¹ Hardy's notation: $f = \Omega(g)$ iff g = O(f).