INVOLUTIONS WITH NONZERO ARF INVARIANT

BY ISRAEL BERSTEIN¹

Communicated by F. P. Peterson, February 26, 1968

Browder and Livesay [1] have associated with each differentiable fixed point free involution $T: \Sigma^{2q+1} \longrightarrow \Sigma^{2q+1}$, where $\Sigma = \Sigma^{2q+1}$ is a homotopy sphere, a "signature" $\sigma(\Sigma, T) \in Z \equiv 0 \mod 8$ if q is odd, or an "Arf invariant" $c(\Sigma, T) \in Z_2$, if q is even. If $q \ge 3$, then Σ contains a differentiably imbedded 2q-sphere invariant with respect to T if and only if $\sigma(\Sigma, T) = 0$ or $c(\Sigma, T) = 0$ [1].

S. López de Medrano has constructed for every odd q examples of involutions T with nonzero signature. We prove the following

THEOREM. For every $k \ge 1$ there exists a fixed point free differentiable involution $T: \Sigma^{4k+1} \longrightarrow \Sigma^{4k+1}$ with $c(\Sigma, T) \ne 0$. Here Σ is the "Kervaire homotopy sphere," i.e., the generator of bP_{4k+2} [3], [4] if the latter group is $\ne 0$; otherwise it is the standard sphere.

The author understands that D. Montgomery and C. T. Yang have an example of a differentiable involution on Σ^9 with $c(\Sigma, T) \neq 0$. The fact that there are PL-involutions with $c(\Sigma, T) \neq 0$ on any (4k+1)-dimensional sphere follows from the classification of C. T. C. Wall [8].

I would like to thank G. R. Livesay for valuable suggestions and for many discussions which have helped me understand the problem.

1. Recall of definitions. Let T be a differentiable (or PL) fixed point free involution on $\Sigma = \Sigma^{4k+1}$. A characteristic manifold N^{4k} is an invariant submanifold such that $\Sigma = A \cup B$, $N = A \cap B$, B = TA. There always exists such an N which is (2k-1)-connected [1]. Let $G = H_{2k}(N, Z_2) = H_{2k}(N) \otimes Z_2$. For x, $y \in G$, the intersection coefficients $A(x, y) = x \cdot y \in Z_2$, and $B(x, y) = x \cdot Ty$ define nonsingular symmetric bilinear forms on G and

(1)
$$A(x, Ty) = B(x, y).$$

Browder and Livesay [1] define a quadratic form $\psi_0: G \to Z_2$ (if $x \in G$ is represented by an immersed sphere σ in general position with respect to $T\sigma$, then $\psi_0(x)$ is 1 if and only if $\sigma \cap T\sigma$ consists of an odd number of pairs of points). One can also define [7] another qua-

¹ Partially supported by NSF Grant GP 3685.