INVOLUTIONS WITH NONZERO ARF INVARIANT

BY ISRAEL BERSTEIN ${ }^{1}$
Communicated by F. P. Peterson, February 26, 1968

Browder and Livesay [1] have associated with each differentiable fixed point free involution $T: \Sigma^{2 q+1} \rightarrow \Sigma^{2 q+1}$, where $\Sigma=\Sigma^{2 q+1}$ is a homotopy sphere, a "signature" $\sigma(\Sigma, T) \in Z(\equiv 0 \bmod 8)$ if q is odd, or an "Arf invariant" $c(\Sigma, T) \in Z_{2}$, if q is even. If $q \geqq 3$, then Σ contains a differentiably imbedded $2 q$-sphere invariant with respect to T if and only if $\sigma(\Sigma, T)=0$ or $c(\Sigma, T)=0[1]$.
S. López de Medrano has constructed for every odd q examples of involutions T with nonzero signature. We prove the following

Theorem. For every $k \geqq 1$ there exists a fixed point free differentiable involution $T: \Sigma^{4 k+1} \rightarrow \Sigma^{4 k+1}$ with $c(\Sigma, T) \neq 0$. Here Σ is the "Kervaire homotopy sphere," i.e., the generator of $b P_{4 k+2}$ [3], [4] if the latter group is $\neq 0$; otherwise it is the standard sphere.

The author understands that D. Montgomery and C. T. Yang have an example of a differentiable involution on Σ^{9} with $c(\Sigma, T) \neq 0$. The fact that there are PL-involutions with $c(\Sigma, T) \neq 0$ on any ($4 k+1$)-dimensional sphere follows from the classification of C. T. C. Wall [8].

I would like to thank G. R. Livesay for valuable suggestions and for many discussions which have helped me understand the problem.

1. Recall of definitions. Let T be a differentiable (or PL) fixed point free involution on $\Sigma=\Sigma^{4 k+1}$. A characteristic manifold $N^{4 k}$ is an invariant submanifold such that $\Sigma=A \cup B, N=A \cap B, B=T A$. There always exists such an N which is ($2 k-1$)-connected [1]. Let $G=H_{2 k}\left(N, Z_{2}\right)=H_{2 k}(N) \otimes Z_{2}$. For $x, y \in G$, the intersection coefficients $A(x, y)=x \cdot y \in Z_{2}$, and $B(x, y)=x \cdot T y$ define nonsingular symmetric bilinear forms on G and

$$
\begin{equation*}
A(x, T y)=B(x, y) \tag{1}
\end{equation*}
$$

Browder and Livesay [1] define a quadratic form $\psi_{0}: G \rightarrow Z_{2}$ (if $x \in G$ is represented by an immersed sphere σ in general position with respect to $T \sigma$, then $\psi_{0}(x)$ is 1 if and only if $\sigma \cap T \sigma$ consists of an odd number of pairs of points). One can also define [7] another qua-

[^0]
[^0]: ${ }^{1}$ Partially supported by NSF Grant GP 3685.

