SOME THEOREMS ON FACTORIZATION OF MEROMORPHIC FUNCTIONS

BY FRED GROSS
Communicated by M. Gerstenhaber, March 13, 1968

In [3] the author proved
Theorem 1. ${ }^{1}$ If f is any entire function of lower order less than $\frac{1}{2}$ and g is entire, then $f(g)$ is periodic if and only if g is.

By means of a result due to Edrei [1] and Ostrovskii [6] it is possible to generalize Theorem 1 to a certain class of meromorphic functions. We begin with

Lemma 1 (Edrei [1], Ostrovskii [6]). Let $f(z)$ be meromorphic of lower order $\lambda<\frac{1}{2}$. If $\delta(\infty, f)>1-\cos \pi \lambda$, then $\left|f\left(\mathrm{re}^{i \theta}\right)\right| \rightarrow \infty$, uniformly in θ as $r_{n} \rightarrow \infty$ through a suitable sequence.
Here δ is the Nevanlinna deficiency (see Hayman [5, p. 42]).
Theorem 2. Let f be meromorphic of lower order λ and let g be entire. If $0 \leqq \lambda<\frac{1}{2}$ and for some $a, \delta(a, f)>1-\cos \pi \lambda$, then $f(g)$ is periodic if and only if g is. If τ is a period of $f(g)$, then g has a period having the same argument as τ.

Sketch of Proof. We assume that $f(g)$ is periodic with period τ having argument α. Let L be the half line re ${ }^{i \alpha}$ everywhere except near poles of $f(g)$, where we let L loop around them with radius ϵ, ϵ a small positive number. Letting $f^{*}(z)=1 /(f(z)-a)$ and applying Lemma 1 we see that $\left|f^{*}\left(\mathrm{re}^{i \theta}\right)\right| \rightarrow \infty$, uniformly in θ as $r_{n} \rightarrow \infty$ through a suitable sequence. From the hypotheses of the theorem it follows that $f(g)$ is bounded on L. If g is bounded on L, then as in the proof of Theorem 1 (see [3]) g must be periodic with a period having the same argument as τ. If g is unbounded on L, then f is bounded on $g(L)$ and this leads to a contradiction via Lemma 1.

Corollary. If P is a polynomial and f is as in Theorem 2, then $f(P)$ is not periodic.

This Corollary is a partial solution to the more general question suggested in [4]: If f is meromorphic for which polynomials is $f(P)$ periodic?

[^0]
[^0]: ${ }^{1} \mathrm{~N}$. Baker proved an analogue of this theorem for f of order $<1 / 2$. See On some results of A. Renyi and C. Renyi concerning periodic entire functions, Acta Sci. Math. (Szeged) 27 (1966), 197-200.

