ON THE EQUATION $f^{n}+g^{n}=1$. II

BY FRED GROSS

Communicated by M. Gerstenhaber, March 13, 1968
In [3], [4] the author proved that

$$
\begin{equation*}
f^{3}+g^{3}=1 \tag{1}
\end{equation*}
$$

has the solutions

$$
\begin{equation*}
f=\frac{1}{2}\left(1+\frac{\wp^{\prime}}{\sqrt{3}}\right) / \wp, \quad g=\frac{1}{2}\left(1-\frac{\wp^{\prime}}{\sqrt{3}}\right) / \varnothing \tag{2}
\end{equation*}
$$

where the 8 -function satisfies

$$
\begin{equation*}
\left.\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-1 \quad \text { (i.e., } g_{2}=0 \quad \text { and } \quad g_{3}=1\right) \tag{3}
\end{equation*}
$$

In [3] the author conjectured that all meromorphic solutions of (1) are necessarily elliptic functions of entire functions.

The conjecture was proved by Baker [1]. Baker proved
Theorem 1. Any functions $F(z)$ and $G(z)$, which are meromorphic in the plane and satisfy (1) have the form

$$
F=f(h(z)), \quad G=\eta g(h(z))=\eta f(-h(z))=f\left(-\eta^{2} h(z)\right),
$$

where f and g are the elliptic functions in (2). $h(z)$ is an entire function of z and η is a cube-root of unity.

In this note we give an alternate proof of Theorem 1. In fact we prove

Theorem 2. The function f in (2) is a uniformizing function of the Riemann surface of

$$
\begin{equation*}
x^{3}+y^{3}=1 \tag{4}
\end{equation*}
$$

f maps the whole z-plane in a 1-1 manner on the Riemann surface of (4). ${ }^{1}$

Proof. Since $\left(1-f^{3}\right)^{1 / 3}$ is a single valued meromorphic function, one can easily verify that either f is a uniformizing function or $f=l(h)$, where l is a uniformizing function and h is nonlinear and entire. The latter, however, is impossible. For otherwise we have $f=l(h)$ and $g=r(h)$, so that f and g and hence \wp and \wp^{\prime} have h as a common

[^0]
[^0]: ${ }^{1}$ In the sequel, uniformizing functions are assumed to have this additional property.

