A FIXED POINT THEOREM FOR SET VALUED MAPPINGS¹

BY JACK T. MARKIN

Communicated by C. B. Morrey, Jr., February 5, 1968

Let *H* be a real Hilbert space with closed unit ball *B* and let K(H) denote the family of nonempty compact convex subsets of *H* supplied with the Hausdorff metric *D* generated by the norm of *H*. A mapping $\phi: H \rightarrow K(H)$ is *contractive* if for any pair *x*, $y \in H$, $D(\phi(x), \phi(y)) \leq D(x, y)$. If $x \in \phi(x)$, then *x* is a fixed point of ϕ .

In this paper we shall prove the following fixed point theorem for set valued contractions, which is an extension of a theorem of Browder [1].

THEOREM 1. Let $\phi: H \rightarrow K(H)$ be a contractive mapping such that $\phi(x) \subset B$ for every $x \in B$. Then ϕ has a fixed point in B.

The proof relies on a generalization of the concept of monotone mappings of H into H to mappings of H into K(H), and also depends on Theorem 2 which we state without proof.

THEOREM 2. Assume that X is a complete bounded metric space and that ϕ maps X into the family of nonempty closed subsets of X. If there is a $k \in [0, 1)$ such that for any pair x, $y \in X$, $D(\phi(x), \phi(y)) \leq kD(x, y)$, then ϕ has a fixed point. (Here D is the Hausdorff metric generated by the metric of X.)

A mapping G of H into the family of nonempty subsets of H is *monotone* if given $u, v \in H$ and $\bar{u} \in G(u)$ there is a $\bar{v} \in G(v)$ such that $(\bar{u} - \bar{v}, u - v) \ge 0$.

LEMMA 1. Let G: $H \rightarrow K(H)$ be a continuous monotone map, and assume that for some pair v, $\bar{v} \in H$ and every $u \in H$ there is a $\bar{u} \in G(u)$ such that $(\bar{v} - \bar{u}, v - u) \ge 0$. Then, $\bar{v} \in G(v)$.

PROOF. Suppose $\bar{v} \oplus G(v)$. By weak compactness, there is a $w \oplus H$ such that $(\bar{v}, w) < (x, w)$ for every $x \oplus G(v)$. Let $v_n = v - (1/n)w$; since G is monotone there exists a $\bar{v}_n \oplus G(v_n)$ such that $(\bar{v} - \bar{v}_n, v - v_n) \ge 0$ for all n. Therefore $(\bar{v}, w) \ge (\bar{v}_n, w)$. Since $D(G(v_n), G(v))$ tends to 0 as $n \to \infty$ by continuity, we may assume that $\{\bar{v}_n\}$ tends weakly to a point \bar{x} and that there is a sequence $\{z_n\}, z_n \oplus G(v)$, such that

 $^{^{\}rm 1}$ This work was supported by the U. S. Army Research Office-Durham, contract DA-31-124-ARO-D-265.