5. Hanna Neumann, Varieties of groups, Ergebnisse der Mathematik ihrer Grenzgebiete, vol. 37, Springer-Verlag, Berlin, 1967.

6. Sheila Oates and M. B. Powell, *Identical relations in finite groups*, J. Algebra 1 (1964), 11-39.

THE CITY UNIVERSITY OF NEW YORK AND

THE UNIVERSITY OF QUEENSLAND, BRISBANE, AUSTRALIA

CONTINUITY OF THE VARISOLVENT CHEBYSHEV OPERATOR

BY CHARLES B. DUNHAM

Communicated by R. C. Buck, December 26, 1967

In this note we show that the Chebyshev operator T is continuous at all functions whose best approximations are of maximum degree. Let F be an approximating function unisolvent of variable degree on an interval $[\alpha, \beta]$ and let the maximum degree of F be n. Let P be the parameter space of F. All functions considered will be continuous and for such functions we define the norm

 $||g|| = \max\{|g(x)|: \alpha \leq x \leq \beta\}.$

The Chebyshev problem is, for a given continuous function f, to find an element $T(f) = F(A^*, \cdot), A^* \in P$, for which

$$\rho(f) = \inf\{\|f - F(A, \cdot)\| : A \in P\}$$

is attained. Such an element T(f) is called a best Chebyshev approximation to f on $[\alpha, \beta]$. T(f) can fail to exist, but is unique and characterized by alternation if it exists. Definitions and theory are given in [1].

LEMMA 1. Let $F(A, \cdot)$ be the best approximation to f and F have degree n at A. Let $x_0, \cdot \cdot \cdot, x_n$ be an ordered set of points on which $f - F(A, \cdot)$ alternates n times. If $||f-g|| < \delta$ and $||g - F(B, \cdot)|| \leq \rho(g) + \delta$ then

(1)
$$(-1)^{i}[F(B, x_{i}) - F(A, x_{i})] \operatorname{sgn}(f(x_{0}) - F(A, x_{0})) \geq -3\delta,$$

 $i = 0, \cdots$

The lemma can be obtained using arguments similar to those of Rice [2, p. 63].

LEMMA 2. Let F be of degree n (maximal) at A then for given $\delta > 0$

606

 \cdot, n .