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We investigate the asymptotic behavior as JKT—• <*> of the solution 
G(x, y\ Xo, yo: K) of the following scattering problem P : 

(i)[A+K2]U=ô(x-x0,y-yo), (*,y), (xo,yo)GD; 
(ii) dnU = Q, (x9y)EC; 
(iii) l i m p _ /2(6,o)n^ \dU/dr-iKU\ 2dS~0. 
Here C is the left branch of the coordinate hyperbola (x/h'cos n)3 

— (y/h-sin n)2 = l, w/2 <n<T. In parametric form C is given by the 
equations x = h-cos n-cosh£, y = ±h-s'm n«sinh£, £ ^ 0 . 

D is the infinite two dimensional region bounded by the convex side 
of C; D consists of all points (x, y) with elliptic coordinates (£, rj) such 
t h a t £ ^ 0 , a n d - n ^ ^ n . D*= DUC, and2(p,0) = {(x,y):x2+y* = p2}. 

A is the two dimensional Laplacian, ô(x—XQ, y—yo) is Dirac's 
ô-function, and dn denotes differentiation in the direction of the out
ward normal to C. 

Our result is a rigorous asymptotic expansion of the Green's func
tion G as K(>0)—>oo that holds uniformly in every closed bounded 
subset S<(#o, yo) of the "shadow" S(xo, yo) of C S(x0, yo) consists of 
those points in DUC that cannot be joined to (XQ, yo) by a line seg
ment lying entirely in DUC 

The asymptotic expansion we get for G confirms the geometrical 
theory of diffraction by convex cylinders of infinite cross section 
(see [1]). 

Furthermore, our rigorous asymptotic solution of the problem P 
can be used with certain bounds to obtain asymptotic solutions of a 
general class of scattering problems with smooth convex boundaries 
C' that coincide with C in neighborhoods of the points of "diffrac
tion "; the points where the boundary of S(xo, y0) intersects C For 
example if C is formed by joining a convex arc A to the "illuminated" 
part of C, then an asymptotic expansion of the solution G' in the 
shadow S'(xo, yo) (=* £(#<>, yo)) can be obtained once it is known, for 
some positive iV, that G'(x, y; x0) yQ: K)~0(KN) as K—><x>, uniformly 
in (x,y), (x,y)EA. 
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