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Many of the difficulties in the study of functions between infinite 
dimensional Banach spaces disappear when one considers only per­
turbations of a fixed, well behaved, map by a class of maps with some 
finiteness condition on their range, for example compact perturba­
tions of the identity map as in the Leray-Schauder theory. The results 
stated below are intended to indicate how this procedure can be ex­
tended to study maps between Banach manifolds. In particular it can 
be used to describe the homotopy properties of Fredholm maps, 
introduced by Smale in [S]. 

These results are contained in the author's Oxford doctoral thesis, 
written under the supervision of M. F. Atiyah. It is a great pleasure 
to be able to thank Professor Atiyah, and also Professor J. Eells for 
all their help and encouragement. 

A version of Theorem 2 was proved independently by A. J. Tromba 
who used it to develop an oriented degree theory for proper Fredholm 
maps which he applied to give a proof of the Schauder existence 
theorem for quasi-linear elliptic equations. A detailed discussion of all 
these results is intended in a future joint publication with A. J. 
Tromba. 

Throughout, E and F will denote infinite dimensional Banach 
spaces, and X a paracompact space. A O-smooth manifold will mean 
a Cp Banach manifold which admits Cp partitions of unity. For back­
ground material and an exhaustive bibliography see the survey article 
by Eells [3]. 

1. Linear theory. The nonlinear theory is based on the linear 
theory sketched here. 

L(E, F) will denote the Banach space of bounded linear maps 
T: E-+F, $n(-E, F) the subspace of $»-operators (i.e. Fredholm oper­
ators of index n), GL(£) the group of units in L(E, E), GLC(E) the 
subgroup of GL(E) consisting of elements of the form 7+a, where a 
is compact, and GLF(E) the corresponding group with a of finite 
rank. A vector bundle map which is a $n-operator on each fibre will 
be called a '$„ bundle map\ 

PROPOSITION 1. Let r: B—>X be an E-vector bundle. 
(i) A $o bundle map f: B—+XXE over the identity map of X induces 

a unique GLp(E)-structure {ir, ƒ} on w such that, in a trivialization of 
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