GENERATORS AND RELATIONS FOR CERTAIN SPECIAL LINEAR GROUPS

BY RICHARD G. SWAN

Communicated by Saunders Mac Lane, January 23, 1968

Several years ago I calculated presentations for several of the groups SL(2, R) where R is the ring of integers of a quadratic imaginary number field $K = Q((-m)^{1/2})$. The method used was extremely tedious and was never published. Recently, while checking these calculations, I discovered a much simpler approach to the problem which I will outline here. The interest in these calculations is considerably increased by recent results of Serre [6]. He considers the congruence subgroup problem for the groups SL(2, R) where R is the ring of integers 0 of an algebraic number field (and, more generally for $R = O[a^{-1}]$ where $a \in O$. He obtains the expected results [1], [5] whenever R has a unit of infinite order. Thus the only exceptions are R = Z and the case which I will consider here. Serve has also shown that all of these cases are true exceptions. The case R = Z is, of course, well known. Hopefully, the calculations outlined here will throw some light on the remaining cases. At present, I have only carried out the calculations for fields K with discriminants D between -1 and -24. The length of the calculation increases rapidly with |D| but the calculation could easily be extended to arbitrarily large values of |D|by machine computation. This has not been done at the present time. Full details of the calculations will be published elsewhere. I would like to thank H. Bass for communicating Serre's results to me.

1. Transformation groups. The original calculation depended on a theorem of Macbeath [4]. However, this leads to an excessively large number of generators and relations and so to the long and tedious process of simplifying the presentation. The main simplification results from a generalization of Macbeath's theorem to non-simply-connected spaces.

Let X be a pathwise connected topological space. Let G be a group acting on X by homeomorphisms and let V be a pathwise connected open subset of X whose transforms cover X = GV. Let E be the set of elements $\sigma \in G$ such that $V \cap \sigma V \neq \emptyset$. Let Γ be a group with one generator $[\sigma]$ for each $\sigma \in E$ and with the relations $[\sigma\tau] = [\sigma][\tau]$ whenever $V \cap \sigma V \cap \sigma \tau V \neq \emptyset$. Let $\epsilon \colon \Gamma \to G$ by $\epsilon([\sigma]) = \sigma$. Macbeath's theorem asserts that ϵ is an isomorphism if $\pi_1(X) = 0$. In the general case, the following result holds.