POLYNILPOTENT GROUPS OF PRIME EXPONENT

BY N. D. GUPTA
Communicated by W. Feit, November 17, 1967

Let $\gamma_{n}(G)$ denote the nth term of the lower central series of a group G and define $\gamma_{m} \gamma_{n}(G)=\gamma_{m}\left(\gamma_{n}(G)\right)$. For a fixed positive integer k define

$$
f_{k}(1)=1 \quad \text { and } \quad f_{k}(n)=f_{k}[n / 2]+k f_{k}[(n+1) / 2]
$$

for all $n>1$. In this paper we prove
Theorem. Let (m_{1}, \cdots, m_{t}) be a finite sequence of positive integers exceeding 1 and let G be a group of prime exponent p (p odd). Then

$$
\gamma_{r_{t}}(G) \subseteq \gamma_{m_{1}} \gamma_{m_{2}} \cdots \gamma_{m_{i}}(G),
$$

where

$$
r_{t}=m_{t}+\sum_{i=1}^{t-1}\left(m_{i}-1\right) f_{p-2}\left(m_{i+1}\right) \cdots f_{p-2}\left(m_{t}\right) .
$$

If $m_{1}=m_{2}=\cdots=m_{t}=2, r_{t}=1+\sum_{t=0}^{t-1}(p-1)^{i}$, a result of Tobin [2]. In general we have

$$
\gamma_{2} \gamma_{2} \cdots \gamma_{2}(G) \subseteq \gamma_{m_{1}} \gamma_{m_{2}} \cdots \gamma_{m_{t}}(G) \quad\left(\gamma_{2} \text { appears } u_{t} \text { times }\right)
$$

where $u_{t}=k+\sum_{j=1}^{t-1}\left(m_{j}-1\right)$ and k is the least positive integer satisfying $2^{k} \geqq m_{t}$; so that the theorem of Tobin yields

$$
\gamma_{a_{4}}(G) \subseteq \gamma_{m_{1}} \gamma_{m_{2}} \cdots \gamma_{m_{t}}(G),
$$

where $s_{t}=1+\sum_{t=0}^{t_{t}-1}(p-1)^{i}$. The bound r_{t} is in general far less than the known bound s_{t}. For instance in the very special case ($\left.m_{1}, m_{2}, \cdots, m_{t}\right)=\left(2,2^{2}, \cdots, 2^{t}\right)$ while $r_{t}<s_{t}$ we further observe that the degree of the polynomial r_{t} in p is $\left(t^{2}+t-2\right) / 2$ as compared with $2^{t}-2$ in s_{t}.
The proof of the theorem is shown to follow from the following
Lemma. ${ }^{1}$ Let G be a group of prime exponent p (p odd) and let N, A, B be subgroups of G such that N is normal in G and $B \subseteq A$. Then $(N, A, B, \cdots, B) \subseteq(N,(A, B))(N, N)(B$ appears $p-2$ times $)$.

With $N=G^{\prime}$ and $A=B=G$, one gets the well-known MeierWunderli's result that metabelian groups of prime exponent p are nilpotent of class at most p. Since
$\left(\gamma_{[n / 2]}(G), \gamma_{[(n+1) / 2]}(G)\right) \subseteq \gamma_{n}(G) \quad$ and $\quad \gamma_{[(n+1) / 2]}(G) \subseteq \gamma_{[n / 2]}(G)$,

[^0]
[^0]: ${ }^{1}$ For notation and other undefined terms the reader is referred to M. Hall [1].

