FREE PIECEWISE LINEAR INVOLUTIONS ON SPHERES

BY C. T. C. WALL
Communicated by W. Browder, November 14, 1967

If T is a piecewise linear fixed-point free involution on S^{n}, the orbit space $Q^{n}=S^{n} / T$ is a PL-manifold homotopy equivalent to $P_{n}(R)=P^{n}$ [2]; the affirmative solution to the Poincare conjecture implies that conversely for $n \neq 3,4$ the double covering manifold of any such Q^{n} can be identified with S^{n}. Write I_{n} for the set of (oriented if n is even) PL-homeomorphism classes of manifolds Q^{n} homotopy equivalent to P^{n}. We will compute I_{n} for $n \neq 3,4$.

Let Q^{n} be as above. We define a normal invariant $\eta(Q)$. Take a homotopy equivalence $h: P^{n} \rightarrow Q^{n}$ (orientation-preserving if n is odd): this is unique up to homotopy. Approximate $h \times 0$ by a PL-embedding $P^{n} \times Q^{n} \rightarrow R^{N}(N>n)$; let ν^{N} be the normal bundle of the embedding, which exists if N is large enough [5], and $F: \nu^{N} \rightarrow \epsilon^{N}$ the fibre homotopy trivialisation induced by the homotopy equivalence [7], [10, 3.5]. Then (ν, F) induces a homotopy class $\eta(Q)$ of maps $P^{n} \rightarrow G / \mathrm{PL}$, which depends only on the PL-homeomorphism class of Q. We have thus defined $\eta: I_{n} \rightarrow\left[P^{n}, G / \mathrm{PL}\right]$: our description follows Sullivan [8], the main idea goes back to Novikov [6].

We next compute [$P^{n}, G / \mathrm{PL}$]. The homotopy groups of G / PL are known to be \boldsymbol{Z} (in dimensions $4 i$), \boldsymbol{Z}_{2} (in dimensions $4 i+2$), and 0 (in odd dimensions). Further, Sullivan [8] has shown that if finite groups of odd order are ignored, the only nonzero k-invariant is the first (which is $\delta S q^{2}$). We choose fundamental classes $x_{2 i}$ $\in H^{2 i}\left(G / \mathrm{PL} ; \boldsymbol{Z}_{2}\right)(i \neq 2), \alpha \in H^{1}\left(P^{n} ; \boldsymbol{Z}_{2}\right)$. Because of the k-invariant, $\left[P^{4}, G / \mathrm{PL}\right] \cong Z_{4}$: let y be an isomorphism. Further, denote by r the restriction $\left[P^{n+1}, G / \mathrm{PL}\right] \rightarrow\left[P^{n}, G / \mathrm{PL}\right]$. Then we have

Lemma 1. Let $i \geqq 0$. Then we have bijections

$$
\left[P^{2 i+\kappa}, G / \mathrm{PL}\right] \stackrel{r}{\cong}\left[P^{2 i+4}, G / \mathrm{PL}\right] \stackrel{X}{\cong} Z_{4} \oplus \sum_{1 \leq j \leq i} Z_{2}
$$

where the components of X are $[y]=y r^{2 i}$ and $\left[x_{2 j+4}\right]$ with

$$
\left[x_{2 j+4}\right](f)=f^{*}\left(x_{2 j+4}\right) \alpha^{2 i-2 j}\left[P_{2 i+4}\right]
$$

Moreover, $\left[x_{2}\right]$ is the mod 2 reduction of [y].
We compute the image and 'kernel' of η by surgery: in fact we have abelian groups $L_{n}\left(Z_{2}^{+}\right)$and $L_{n}\left(Z_{2}^{-}\right)$(the second referring to the non-

