FREE PIECEWISE LINEAR INVOLUTIONS ON SPHERES

BY C. T. C. WALL

Communicated by W. Browder, November 14, 1967

If T is a piecewise linear fixed-point free involution on S^n , the orbit space $Q^n = S^n/T$ is a PL-manifold homotopy equivalent to $P_n(R) = P^n$ [2]; the affirmative solution to the Poincaré conjecture implies that conversely for $n \neq 3$, 4 the double covering manifold of any such Q^n can be identified with S^n . Write I_n for the set of (oriented if n is even) PL-homeomorphism classes of manifolds Q^n homotopy equivalent to P^n . We will compute I_n for $n \neq 3$, 4.

Let Q^n be as above. We define a normal invariant $\eta(Q)$. Take a homotopy equivalence $h: P^n \rightarrow Q^n$ (orientation-preserving if n is odd): this is unique up to homotopy. Approximate $h \times 0$ by a PL-embedding $P^n \times Q^n \rightarrow R^N(N > n)$; let ν^N be the normal bundle of the embedding, which exists if N is large enough [5], and $F: \nu^N \rightarrow \epsilon^N$ the fibre homotopy trivialisation induced by the homotopy equivalence [7], [10, 3.5]. Then (ν, F) induces a homotopy class $\eta(Q)$ of maps $P^n \rightarrow G/PL$, which depends only on the PL-homeomorphism class of Q. We have thus defined $\eta: I_n \rightarrow [P^n, G/PL]$: our description follows Sullivan [8], the main idea goes back to Novikov [6].

We next compute $[P^n, G/PL]$. The homotopy groups of G/PLare known to be Z (in dimensions 4i), Z_2 (in dimensions 4i+2), and 0 (in odd dimensions). Further, Sullivan [8] has shown that if finite groups of odd order are ignored, the only nonzero k-invariant is the first (which is δSq^2). We choose fundamental classes $x_{2i} \in H^{2i}(G/PL; \mathbb{Z}_2)$ $(i \neq 2)$, $\alpha \in H^1(P^n; \mathbb{Z}_2)$. Because of the k-invariant, $[P^4, G/PL] \cong \mathbb{Z}_4$: let y be an isomorphism. Further, denote by r the restriction $[P^{n+1}, G/PL] \rightarrow [P^n, G/PL]$. Then we have

LEMMA 1. Let $i \ge 0$. Then we have bijections

$$[P^{2i+\delta}, G/PL] \stackrel{\boldsymbol{r}}{\cong} [P^{2i+4}, G/PL] \stackrel{\boldsymbol{X}}{\cong} \boldsymbol{Z}_4 \oplus \sum_{1 \leq i \leq i} \boldsymbol{Z}_{2;}$$

where the components of X are $[y] = yr^{2i}$ and $[x_{2j+4}]$ with

$$[x_{2j+4}](f) = f^*(x_{2j+4})\alpha^{2i-2j}[P_{2i+4}].$$

Moreover, $[x_2]$ is the mod 2 reduction of [y].

We compute the image and 'kernel' of η by surgery: in fact we have abelian groups $L_n(\mathbb{Z}_2^+)$ and $L_n(\mathbb{Z}_2^-)$ (the second referring to the non-