ALMOST EVERYWHERE CONVERGENCE OF POISSON INTEGRALS ON GENERALIZED HALF-PLANES

BY NORMAN J. WEISS¹

Communicated by A. P. Calderón, December 6, 1967

1. Introduction. A classical theorem of Fatou states that if f is an L^p function on the line (circle), $p \ge 1$, and if the harmonic function F on the upper half-plane (disk) is the Poisson integral of f, then $F(z) \rightarrow f(x)$ as $z \rightarrow x$ nontangentially for a.e. x on the line (circle).

Generalizations in several directions have recently been found, e.g. [1], [2], [4], [6]. Our result, stated precisely below, is Fatou's theorem for generalized upper half-planes holomorphically equivalent to bounded symmetric domains and functions of type L^p , p>1, or locally of type $L \log +L$. Details will appear elsewhere.

In §2, we sketch the setting and state our result explicitly. The proof is case-by-case, and includes the case of the exceptional domains; §3 is devoted to a sketch of the proof in a typical case.

2. The theorem. Let D be a generalized upper half-plane, i.e.

$$D = \{(z, w) \in V_1 \times V_2 : \operatorname{Im} z - \Phi(w, w) \in \Omega\},\$$

where V_1 is a complex vector space with a given real form, V_2 is a complex vector space, $\Omega \subset \operatorname{Re} V_1$ is an open cone, and $\Phi: V_2 \times V_2 \rightarrow V_1$ is hermitian symmetric bilinear with respect to $\operatorname{Re} V_1$ such that $\Phi(w, w) \in \overline{\Omega}$. When Ω is a domain of positivity and Φ satisfies certain symmetry and homogeneity properties, D is holomorphically equivalent to a bounded symmetric domain [5]. The distinguished boundary of D is

$$B = \{(z, w) : \text{Im } z - \Phi(w, w) = 0\}.$$

We identify B with Re $V_1 \times V_2$ by associating to $(x+i\Phi(w, w), w)$ the pair (x, w). There is a nilpotent group \mathfrak{N} of automorphisms of D which acts transitively on B and is also equal to Re $V_1 \times V_2$ as a set. Haar measure on \mathfrak{N} is the induced Euclidean measure.

The Poisson kernel, $P(u, \zeta)$, is defined on $B \times D$, and the Poisson integral of a function f on B is

$$F(\zeta) = \int_{B} f(u) P(u, \zeta) du.$$

¹ Partially supported by the U. S. Air Force Office of Scientific Research; Harmonic Analysis Contract at Princeton University.