ALMOST EVERYWHERE CONVERGENCE OF POISSON INTEGRALS ON GENERALIZED HALF-PLANES

BY NORMAN J. WEISS ${ }^{1}$
Communicated by A. P. Calderon, December 6, 1967

1. Introduction. A classical theorem of Fatou states that if f is an L^{p} function on the line (circle), $p \geqq 1$, and if the harmonic function F on the upper half-plane (disk) is the Poisson integral of f, then $F(z)$ $\rightarrow f(x)$ as $z \rightarrow x$ nontangentially for a.e. x on the line (circle).

Generalizations in several directions have recently been found, e.g. [1], [2], [4], [6]. Our result, stated precisely below, is Fatou's theorem for generalized upper half-planes holomorphically equivalent to bounded symmetric domains and functions of type $L^{p}, p>1$, or locally of type $L \log +L$. Details will appear elsewhere.

In §2, we sketch the setting and state our result explicitly. The proof is case-by-case, and includes the case of the exceptional domains; $\S 3$ is devoted to a sketch of the proof in a typical case.
2. The theorem. Let D be a generalized upper half-plane, i.e.

$$
D=\left\{(z, w) \in V_{1} \times V_{2}: \operatorname{Im} z-\Phi(w, w) \in \Omega\right\}
$$

where V_{1} is a complex vector space with a given real form, V_{2} is a complex vector space, $\Omega \subset \operatorname{Re} V_{1}$ is an open cone, and $\Phi: V_{2} \times V_{2} \rightarrow V_{1}$ is hermitian symmetric bilinear with respect to $\operatorname{Re} V_{1}$ such that $\Phi(w, w) \in \bar{\Omega}$. When Ω is a domain of positivity and Φ satisfies certain symmetry and homogeneity properties, D is holomorphically equivalent to a bounded symmetric domain [5]. The distinguished boundary of D is

$$
B=\{(z, w): \operatorname{Im} z-\Phi(w, w)=0\}
$$

We identify B with $\operatorname{Re} V_{1} \times V_{2}$ by associating to $(x+i \Phi(w, w)$, w) the pair (x, w). There is a nilpotent group \mathfrak{N} of automorphisms of D which acts transitively on B and is also equal to $\operatorname{Re} V_{1} \times V_{2}$ as a set. Haar measure on \mathfrak{N} is the induced Euclidean measure.

The Poisson kernel, $P(u, \zeta)$, is defined on $B \times D$, and the Poisson integral of a function f on B is

$$
F(\zeta)=\int_{B} f(u) P(u, \zeta) d u
$$

[^0]
[^0]: ${ }^{1}$ Partially supported by the U. S. Air Force Office of Scientific Research; Harmonic Analysis Contract at Princeton University.

