ON WEAK MIXING METRIC AUTOMORPHISMS ${ }^{1}$

by James w. ENGLAND ${ }^{2}$ and N. F. G. MARTIN
Communicated by P. R. Halmos, November 27, 1967

Let (X, \mathfrak{a}, P) be a separable probability space and T a metric automorphism of the space onto itself, i.e. T is, except for null sets, a one to one invertible map from X to X such that $T^{-1}(\mathbb{Q})=\mathfrak{a}$ and $P\left(T^{-1} A\right)=P(A)$ for all $A \in a$.

There are three standard types of mixing for metric automorphisms, namely ergodic, weak mixing, and strong mixing [2]. It is known [1] that an automorphism is ergodic if and only if for all sets A and B from \mathbb{Q} which have nonzero measure there exists a positive integer n such that $P\left(T^{n} A \cap B\right)>0$. In this note we show that a similar condition which we call property W is necessary and sufficient for weak mixing.

Property W. For every two sets A and B of strictly positive measure there exists a subset K of the positive integers with density zero such that for all $k \notin K, P\left(T^{k} A \cap B\right)>0$.

Lemma. If a metric automorphism T satisfies property W then it is strongly ergodic, i.e. every nonzero integral power of T is ergodic.

Proof. Let m be a given positive integer and A and B two sets of positive measure. Let K denote the set of density zero associated with A and B by property W . Denote by M the set of integers $m k$ where k runs over the positive integers. Since the upper density of M is positive, M is not contained in K and there exists $m k \notin K$. Thus $P\left(T^{m k} A \cap B\right)=P\left(\left(T^{m}\right)^{k} A \cap B\right)>0$ and T^{m} is ergodic. Since T ergodic implies T^{-1} ergodic, T^{m} is ergodic for all nonzero integers.

Theorem. A necessary and sufficient condition that a metric automorphism T be weak mixing is that it have property W .

Proof. Suppose first T is weak mixing. Then (see [2]) for A and B given sets of nonzero measure, there exists a subset K^{\prime} of integers with density zero such that $\lim _{n \notin K^{\prime}} P\left(T^{n} A \cap B\right)=P(A) P(B)>0$. Thus for all n not in K^{\prime} and larger than some integer $N, P\left(T^{n} A \cap B\right)$ >0. Let $K=K^{\prime} \cup\{k: 0 \leqq k \leqq N, k$ integer $\}$. The set K has density zero and if $n \notin K$ then $P\left(T^{n} A \cap B\right)>0$.

[^0]
[^0]: ${ }^{1}$ This work was supported in part by ARO Grant 662.
 ${ }^{2}$ National Science Foundation Fellow.

