ON WEAK MIXING METRIC AUTOMORPHISMS¹

BY JAMES W. ENGLAND² AND N. F. G. MARTIN

Communicated by P. R. Halmos, November 27, 1967

Let (X, α, P) be a separable probability space and T a metric automorphism of the space onto itself, i.e. T is, except for null sets, a one to one invertible map from X to X such that $T^{-1}(\alpha) = \alpha$ and $P(T^{-1}A) = P(A)$ for all $A \in \alpha$.

There are three standard types of mixing for metric automorphisms, namely ergodic, weak mixing, and strong mixing [2]. It is known [1] that an automorphism is ergodic if and only if for all sets A and B from α which have nonzero measure there exists a positive integer n such that $P(T^nA \cap B) > 0$. In this note we show that a similar condition which we call property W is necessary and sufficient for weak mixing.

PROPERTY W. For every two sets A and B of strictly positive measure there exists a subset K of the positive integers with density zero such that for all $k \in K$, $P(T^*A \cap B) > 0$.

LEMMA. If a metric automorphism T satisfies property W then it is strongly ergodic, i.e. every nonzero integral power of T is ergodic.

PROOF. Let *m* be a given positive integer and *A* and *B* two sets of positive measure. Let *K* denote the set of density zero associated with *A* and *B* by property W. Denote by *M* the set of integers *mk* where *k* runs over the positive integers. Since the upper density of *M* is positive, *M* is not contained in *K* and there exists $mk \in K$. Thus $P(T^{mk}A \cap B) = P((T^m)^kA \cap B) > 0$ and T^m is ergodic. Since *T* ergodic implies T^{-1} ergodic, T^m is ergodic for all nonzero integers.

THEOREM. A necessary and sufficient condition that a metric automorphism T be weak mixing is that it have property W.

PROOF. Suppose first T is weak mixing. Then (see [2]) for A and B given sets of nonzero measure, there exists a subset K' of integers with density zero such that $\lim_{n \notin K'} P(T^nA \cap B) = P(A)P(B) > 0$. Thus for all n not in K' and larger than some integer N, $P(T^nA \cap B)$ >0. Let $K = K' \cup \{k: 0 \le k \le N, k \text{ integer}\}$. The set K has density zero and if $n \notin K$ then $P(T^nA \cap B) > 0$.

¹ This work was supported in part by ARO Grant 662.

² National Science Foundation Fellow.