A Characterization of spaces with vanishing GENERALIZED HIGHER WHITEHEAD PRODUCTS

BY F. D. WILLIAMS ${ }^{1}$
Communicated by R. H. Bing, November 27, 1967

A subject of recent investigation in homotopy theory has been the study of generalized higher order Whitehead products, cf. [1] and [3]. Let us say that a space, X, has property P_{n} if for any f_{1}, \cdots, f_{n}, $f_{i}: S A_{i} \rightarrow X$, we have $0 \in\left[f_{1}, \cdots, f_{n}\right]$, where $\left[f_{1}, \cdots, f_{n}\right]$ denotes the Set of all nth order Whitehead products of f_{1}, \cdots, f_{n}, as defined in [3]. Thus $0 \in\left[f_{1}, \cdots, f_{n}\right]$ means that $f_{1} \vee \cdots \vee f_{n}: S A_{1} \vee \cdots$ $\vee S_{A_{n} \rightarrow X}$ can be extended to some $F: S A_{1} \times \cdots \times S A_{n} \rightarrow X$. (We note at this point that it is an unresolved conjecture as to whether X N_{w} property P_{n} implies that 0 is the only element of $\left[f_{1}, \cdots, f_{n}\right]$.) N_{0} if X is an H-space, then X possesses property P_{n} for all n, [3]. Thus multiplicative properties of X itself are too strong to distinguish among the various properties P_{n}. On the other hand, it follows from results of [1] and [4] that a space has property P_{2} if and only if its ${ }^{\text {loop space is homotopy-commutative. In Theorem } 1 \text { below, we shall }}$ extend this result to characterize those spaces which have property P_{n} in terms of higher homotopy-commutativity properties of their ${ }^{l}{ }^{0}$ p spaces. Since we shall wish to be able on occasion to replace a ${ }^{100}$ p space by an equivalent CW-monoid, we shall restrict our attention to the category of countable CW-complexes.
The higher homotopy-commutativity properties we need are
Definition. An associative H-space, Y, is called a C_{n}-space provided that there exist maps $Q_{i}: C(i-1) \times Y^{i} \rightarrow Y, 1 \leqq i \leqq n$, such that:
(1) $\mathrm{Q}_{1}: C(0) \times Y \rightarrow Y$ is the identity;
(2) $Q_{i}\left([\mu, \nu] \circ d_{p}(r, s), y_{1}, \cdots, y_{i}\right)=Q_{p}\left(r, y_{\mu(1)}, \cdots, y_{\mu(p)}\right)$ $\cdot Q_{q}\left(s, y_{v(1)}, \cdots, y_{v(q)}\right)$, for (p, q)-shuffles (μ, ν), where $p+q=i$, ${ }^{r} \in C(p-1)$, and $s \in C(i-p)$; and
(3) if e denotes the identity of Y, and if $y_{i}=e$, then

$$
Q_{i}\left(T, y_{1}, \cdots, y_{i}\right)=Q_{i-1}\left(D_{j}(T), y_{1}, \cdots, \vartheta_{j}, \cdots, y_{i}\right) .
$$

$Q_{i}\left(T, y_{1}, \cdots, y_{i}\right)=Q_{i-1}\left(D_{j}(T), y_{1}, \cdots, \hat{y}_{j}, \cdots, y_{i}\right)$.
Here $_{\text {en }}(i)$ is the convex linear cell described in [2], namely the convex
hull of the orbit of the point $(1, \cdots, n+1)$ under permutation of the
Coordinates in R^{n+1}. The map $d_{p}: C(p-1) \times C(i-p) \rightarrow C(i)$ is given by
$\underbrace{d_{p}\left(x_{1}, \cdots, x_{p}, y_{1}, \cdots, y_{i-p+1}\right)=\left(x_{1}, \cdots, x_{p}, y_{1}+p, \cdots, y_{i-p+1}+p\right),}$
${ }^{1} S_{\text {Upported by the }}$ National Science Foundation Grant GP-6318.

