THE COHOMOLOGY OF PRINCIPAL BUNDLES, HOMOGENEOUS SPACES, AND TWO-STAGE POSTNIKOV SYSTEMS

BY J. P. MAY^1

Communicated by F. P. Peterson, November 13, 1967

In this note, we state some results on the cohomology of topological spaces that have been obtained by a study of the Eilenberg-Moore spectral sequence. Details and proofs will appear in [11].

We consider either of the essentially equivalent diagrams:

	F = F			E
	$\downarrow \downarrow$			Ļ
Figure 1	$E \rightarrow Y$	or	Figure 2	X
	$\begin{array}{c} \downarrow \\ X \xrightarrow{f} \\ B \end{array}$			$\downarrow f$
	$X \xrightarrow{J} B$			В

In Figure 1, $Y \rightarrow B$ is an acyclic fibration with fibre F and $E \rightarrow X$ is the fibration induced by $f: X \rightarrow B$. In Figure 2, $f: X \rightarrow B$ is a Serre fibration with fibre E. We assume (in both cases) that B is pathwise connected and simply connected. Our results concern the cohomology of E.

Let Λ be a commutative Noetherian ring. Cohomology will be taken with coefficients in Λ except where explicitly stated otherwise. We assume that $H^*(B)$ is Λ -flat and that $H^*(X)$ and $H^*(B)$ are of finite type as Λ -modules. Then there is a spectral sequence of differential Λ -algebras $\{E_r\}$, defined by Eilenberg and Moore [6], which satisfies the conditions:

(i) $E_2 = \operatorname{Tor}_{H^*(B)}(\Lambda, H^*(X))$, where $H^*(X)$ has the structure of left $H^*(B)$ -module determined by the map $f^*: H^*(B) \to H^*(X)$, and

(ii) $\{E_r\}$ converges to $H^*(E)$, in the sense that E_{∞} is isomorphic to the associated graded algebra $E^0H^*(E)$ of $H^*(E)$ with respect to a suitable filtration.

With these hypotheses and notations, we have the following result.

THEOREM. Let $H^*(B)$ be a polynomial algebra, and let X be one of the following:

(a) X = BG, where G is a compact connected Lie group such that $H^*(BG)$ is a polynomial algebra on even degree generators.

¹ Research partially supported by N.S.F. grant number GP-5609.