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In this note, we state some results on the cohomology of topological
spaces that have been obtained by a study of the Eilenberg-Moore
spectral sequence. Details and proofs will appear in [11].

We consider either of the essentially equivalent diagrams:
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In Figure 1, Y—B is an acyclic fibration with fibre F and E—X is
the fibration induced by f: X—B. In Figure 2, f: X—B is a Serre
fibration with fibre E. We assume (in both cases) that B is pathwise
connected and simply connected. Our results concern the cohomology
of E.

Let A be a commutative Noetherian ring. Cohomology will be
taken with coefficients in A except where explicitly stated otherwise.
We assume that H*(B) is A-flat and that H*(X) and H*(B) are of
finite type as A-modules. Then there is a spectral sequence of dif-
ferential A-algebras {E,}, defined by Eilenberg and Moore [6],
which satisfies the conditions:

(i) Ey=Torgxm @A, H*(X)), where H*(X) has the structure of left
H*(B)-module determined by the map f*: H*(B)—H*(X), and

(ii) {E,} converges to H*(E), in the sense that E, is isomorphic
to the associated graded algebra E°H*(E) of H*(E) with respect to a
suitable filtration.

With these hypotheses and notations, we have the following result.

THEOREM. Let H*(B) be a polynomial algebra, and let X be one of the
following:

(a) X =BG, where G is a compact connected Lie group such that
H*(BG) is a polynomial algebra on even degree generators.
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