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In this note, we state some results on the cohomology of topological 
spaces that have been obtained by a study of the Eilenberg-Moore 
spectral sequence. Details and proofs will appear in [ l l ] . 

We consider either of the essentially equivalent diagrams: 

F = F E 

Figure 1 E —» F or Figure 2 X 

i l if 
xL B B 

In Figure 1, Y-+B is an acyclic fibration with fibre F and E—>X is 
the fibration induced by f: X—>B. In Figure 2, ƒ: X—>B is a Serre 
fibration with fibre E. We assume (in both cases) that B is pathwise 
connected and simply connected. Our results concern the cohomology 
of E. 

Let A be a commutative Noetherian ring. Cohomology will be 
taken with coefficients in A except where explicitly stated otherwise. 
We assume that H*(B) is A-flat and that H*(X) and H*(B) are of 
finite type as A-modules. Then there is a spectral sequence of dif
ferential A-algebras {Er}, defined by Eilenberg and Moore [ó], 
which satisfies the conditions : 

(i) E2 = TorH*(B)(A, H*(X)), where H*(X) has the structure of left 
#*(£)-module determined by the m a p / * : H*(B)->H*(X), and 

(ii) {Er} converges to H*(E)t in the sense that E*, is isomorphic 
to the associated graded algebra E°H*(E) of H*(E) with respect to a 
suitable filtration. 

With these hypotheses and notations, we have the following result. 

THEOREM. Let H*(B) be a polynomial algebra, and let X be one of the 
following: 

(a) X = BG, where G is a compact connected Lie group such that 
H*(BG) is a polynomial algebra on even degree generators. 
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