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The duality theory of geometric programming as developed by 
Duffin, Peterson, and Zener [ l] is based on abstract properties 
shared by certain classical inequalities, such as Cauchy's arithmetic-
geometric mean inequality and Holder's inequality. Inequalities with 
these abstract properties have been termed "geometric inequalities" 
( [ l , p. 195]). We have found a new geometric inequality, which we 
state below, and have used it to extend the "refined duality theory' ' of 
geometric programming developed by Duffin and Peterson ( [2] and [l, 
Chapter VI]) . This extended duality theory treats both quadrati-
cally-constrained quadratic programs and /^-constrained ^-approxi­
mation problems. By a quadratically constrained quadratic program 
we mean: to minimize a positive semidefinite quadratic function, 
subject to inequality constraints expressed in terms of the same type 
of functions. By an Zp-constrained ^-approximation problem we 
mean: to minimize the lp norm of the difference between a fixed 
vector and a variable linear combination of other fixed vectors, sub­
ject to inequality constraints expressed by means of lp norms. 

Both the classical unsymmetrical duality theorems for linear pro­
gramming (Gale, Kuhn and Tucker [3], and Dantzig and Orden [4]) 
and the unsymmetrical duality theorems for linearly-constrained 
quadratic programs (Dennis [5], Dorn [6], [7], Wolfe [8], Hanson 
[9], Mangasarian [lO], Huard [ l l ] , and Cottle [12]) can be derived 
from the extended duality theorems that we state below and have 
proved on the basis of the new geometric inequality. 

The new geometric inequality is 
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