JACOBI POLYNOMIAL EXPANSIONS WITH POSITIVE COEFFICIENTS AND IMBEDDINGS OF PROJECTIVE SPACES

BY RICHARD ASKEY ${ }^{1}$

To I. J. Schoenberg on his 65th birthday

Communicated by H. Helson, September 25, 1967
In much of Schoenberg's work there has been a strong interconnection between analytic and geometric reasoning. Here we use a remark he made about imbeddings of metric spaces to prove part of a conjecture about when a Jacobi polynomial $P_{n}^{(\gamma, \delta)}(x)$ can be expanded in terms of another $P_{k}^{(\alpha, \beta)}(x)$ with nonnegative coefficients. Also we get from a different special case of this conjecture some nonimbedding theorems for projective spaces.
$P_{n}^{(\alpha, \beta)}(x)$, the Jacobi polynomial of degree n, order $(\alpha, \beta), \alpha, \beta>-1$, is defined by

$$
\begin{equation*}
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} n!}\left(\frac{d}{d x}\right)^{n}\left[(1-x)^{n+\alpha}(1+x)^{n+\beta}\right] \tag{1}
\end{equation*}
$$

These polynomials are orthogonal on $(-1,1)$ with respect to the weight function $(1-x)^{\alpha}(1+x)^{\beta}$ and what is crucial for us is that $P_{n}^{(\alpha, \beta)}(1)>0$. We consider the expansion

$$
\begin{equation*}
P_{n}^{(\gamma, \delta)}(x)=\sum_{k=0}^{n} \alpha_{k} P_{k}^{(\alpha, \beta)}(x) \tag{2}
\end{equation*}
$$

and ask for what values of $\alpha, \beta, \gamma, \delta$ are all the coefficients $\alpha_{k}, k=0$, $1, \cdots, n$, nonnegative. For $\beta=\delta$ and $\gamma>\alpha$ the α_{k} were computed by Szegö [8] and were found to be positive. He used this relation to solve the end point Cesàro summability problem for Jacobi series.

For $\alpha=\beta, \gamma=\delta$ the α_{k} were given by Gegenbauer [5] and again they are nonnegative for $\alpha>\gamma$. This has been used by Hua [6] and Askey and Wainger [1]. Actually this result of Gegenbauer is a special case of Szegö's result. For

$$
\begin{equation*}
\frac{P_{n}^{(\alpha,-1 / 2)}\left(2 x^{2}-1\right)}{P_{n}^{(\alpha,-1 / 2)}(1)}=\frac{P_{2 n}^{(\alpha, \alpha)}(x)}{P_{2 n}^{(\alpha, \alpha)}(1)} \tag{3}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Supported in part by N.S.F. grant GP-6764.

