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1. Introduction. The result to be proved in this article is that if u 
is a bounded harmonic function on a symmetric space X and XQ any 
point in X then u has a limit along almost every geodesic in X starting 
at XQ (Theorem 2.3). In the case when X is the unit disk with the non-
Euclidean metric this result reduces to the classical Fatou theorem 
(for radial limits). When specialized to this case our proof is quite 
different from the usual one; in fact it corresponds to transforming the 
Poisson integral of the unit disk to that of the upper half-plane and 
using only a homogeneity property of the Poisson kernel. The kernel 
itself never enters into the proof. 

2. Harmonic functions on symmetric spaces. Let G be a semisimple 
connected Lie group with finite center, K a maximal compact sub
group of G and g and Ï their respective Lie algebras. Let B denote the 
Killing form of g and p the corresponding orthogonal complement of 
I in g. Let Ad denote the adjoint representation of G. As usual we 
view p as the tangent space to the symmetric space X = G/K a t the 
origin 0 = {K} and accordingly give X the G-invariant Riemannian 
structure induced by the restriction of B to pXp. Let A denote the 
corresponding Laplace-Beltrami operator. 

Fix a maximal abelian subspace ctCp a n d ' e t M denote the 
centralizer of a in K. If X is a linear function on a and Xs^O let gx 
= {XGg| [H, X] =X(H)Z for all HEa} ; X is called a restricted root 
if gx^O. Let a' denote the open subset of a where all restricted roots 
are 5^0. Fix a Weyl chamber a+ in a, i.e. a connected component of 
a'. A restricted root a is called positive (denoted a>0) if its values on 
ct+ are positive. Let the linear function p on a be determined by 
2p = ]C«>o (dim ga)oj and denote the subalgebras X)«>o 8« and 
]C«>o Ô-o of g by n and n respectively. Let N and F denote the cor
responding analytic subgroups of G. 

By a Weyl chamber in p we understand a Weyl chamber in some 
maximal abelian subspace of p. The boundary of X is defined as the 
set B of all Weyl chambers in the tangent space p to X at 0; since this 
boundary is via the map kM—>Ad(k)a+ identified with K/M> which 
by the Iwasawa decomposition G = KAN equals G/MAN, this defi-
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