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1. Introduction. The object of this paper is to study the isometries
of the Lr-spaces, 1 <p < », associated with a faithful normal semi-
finite trace on a von Neumann algebra M, and their connections with
*_automorphisms of M (see [2], [8] for Lr-spaces, [3] for von Neu-
mann algebras). As is well known, every *-automorphism (or *-anti-
automorphism) of a finite factor M induces an L2-isometry on M.
The problem we consider is the converse: under what conditions does
an L?-isometry induce a *-automorphism? Our purpose is to provide
a method for constructing *-automorphisms of von Neumann alge-
bras.
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2. Preliminaries. Let M be a von Neumann algebra with a faithful
normal semifinite trace ¢. Let m,4 be the ideal of trace operators rela-
tive to ¢ (see [3, p. 80]). If 0<a <+ =, m§ denotes the ideal in M
whose positive elements are the operators x* for x a positive operator
in mg. We have m5Cmb if a=B>0. If ¢ is finite then M=ms=m}
[2, p. 10]. For 1=p< = the set m}? equipped with the norm Hx”,
—¢(| xI ”)“"(I xI (x*x)1/?) is a complex normed linear space, whose
completion is called the L*-space associated with ¢ and M (see [2, pp.
23-27]). We denote this space by L?(¢). L*(¢) denotes the space M
with the operator norm. It is known that L*(¢) is the Banach space
dual of L1(¢) [3, p. 105], and that L#(¢) is the Banach space dual of
Le(¢p) where 1<p< o and 1/p+1/g=1, [2, p. 27]. We use the sym-
bol (, ) to denote these dualities and remark that if xEm}? and
yEmI/“ then (x, y)=a(xy) (here, if p=1, mY? denotes the strong
closure of m,) [2, p. 27]. The space m¥?, w1th the inner product
(x| y) =¢(y*x), is a pre-Hilbert space whose completion is none other
than L2(g).

If M acts on a Hilbert space H, a closed dense linear transformation
z in H is affiliated with M if uzu—'=z for all unitary operators % in
the commutant of M (see remark following Theorem 1).
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