ISOMETRIES OF L*-SPACES ASSOCIATED WITH FINITE VON NEUMANN ALGEBRAS

BY BERNARD RUSSO1

Communicated by Bertram Yood, October 19, 1967

1. Introduction. The object of this paper is to study the isometries of the L^p -spaces, $1 \le p < \infty$, associated with a faithful normal semifinite trace on a von Neumann algebra M, and their connections with *-automorphisms of M (see [2], [8] for L^p -spaces, [3] for von Neumann algebras). As is well known, every *-automorphism (or *-antiautomorphism) of a finite factor M induces an L^2 -isometry on M. The problem we consider is the converse: under what conditions does an L^p -isometry induce a *-automorphism? Our purpose is to provide a method for constructing *-automorphisms of von Neumann algebras.

The author wishes to acknowledge many helpful discussions with Noboru Suzuki concerning this paper.

2. Preliminaries. Let M be a von Neumann algebra with a faithful normal semifinite trace ϕ . Let m_{ϕ} be the ideal of trace operators relative to ϕ (see [3, p. 80]). If $0 < \alpha < +\infty$, m_{ϕ}^{α} denotes the ideal in M whose positive elements are the operators x^{α} for x a positive operator in m_{ϕ} . We have $m_{\phi}^{\alpha} \subset m_{\phi}^{\beta}$ if $\alpha \geq \beta > 0$. If ϕ is finite then $M = m_{\phi} = m_{\phi}^{1}$ [2, p. 10]. For $1 \le p < \infty$ the set $m_{\phi}^{1/p}$ equipped with the norm $||x||_{x}$ $=\phi(|x|^p)^{1/p}(|x|=(x^*x)^{1/2})$ is a complex normed linear space, whose completion is called the L^p -space associated with ϕ and M (see [2, pp. 23-27]). We denote this space by $L^p(\phi)$. $L^{\infty}(\phi)$ denotes the space M with the operator norm. It is known that $L^{\infty}(\phi)$ is the Banach space dual of $L^1(\phi)$ [3, p. 105], and that $L^p(\phi)$ is the Banach space dual of $L^{q}(\phi)$ where 1 and <math>1/p+1/q=1, [2, p. 27]. We use the symbol \langle , \rangle to denote these dualities and remark that if $x \in m_{\phi}^{1/p}$ and $y \in m_{\phi}^{1/a}$, then $\langle x, y \rangle = \phi(xy)$ (here, if p = 1, $m_{\phi}^{1/a}$ denotes the strong closure of m_{ϕ}) [2, p. 27]. The space $m_{\phi}^{1/2}$, with the inner product $(x|y) = \phi(y^*x)$, is a pre-Hilbert space whose completion is none other than $L^2(\phi)$.

If M acts on a Hilbert space H, a closed dense linear transformation z in H is affiliated with M if $uzu^{-1}=z$ for all unitary operators u in the commutant of M (see remark following Theorem 1).

¹ This work was supported by the National Science Foundation, under grant number GP-5436.