# FINITE LINEAR GROUPS IN SEVEN VARIABLES ${ }^{1}$ 

BY DAVID B. WALES<br>Communicated by Walter Feit, August 22, 1967

If $G$ is a finite group which has a faithful complex representation of degree $n$ it is said to be a linear group in $n$ variables. This is equivalent to saying $G$ is a finite group of complex linear transformations. It is customary to consider only unimodular linear transformations. For $n \leqq 4$ these groups have been known for a long time. An account may be found in Blichfeldt's book [1]. For $n=5$ they were determined by R. Brauer in [2]. Results in [2] are used to prove the following theorem for $n=7$.

Theorem 1. If G has a complex irreducible representation of degree 7 which is faithful, unimodular, and primitive, then $G$ is one of the following groups. Here $Z(G)$ is the center of $G$.
I. $G$ is a uniquely determined group of order $7^{4} .48$ which has a normal subgroup $D$ of order $7^{3}, G / D \cong \operatorname{SL}(2,7) . D$ is nonabelian with exponent 1 .
II. Certain subgroups of $G$ in I of order $7^{73} \cdot s$ where $s \mid 48$. These contain D.
III. $G / Z(G) \cong \operatorname{PSL}(2,13)$
IV. $G / Z(G) \cong \operatorname{PSL}(2,8)$
V. $G / Z(G) \cong A_{8}$
VI. $G / Z(G) \cong \operatorname{PSL}(2,7)$
VII. $G / Z(G) \cong \operatorname{PSU}(3,9)$
VIII. $G / Z(G) \cong S_{6}(2)$

$$
\begin{aligned}
G: Z(G) & =13 \cdot 7 \cdot 3 \cdot 2^{2} . \\
G: Z(G) & =7 \cdot 3^{2} \cdot 2^{3}=504 . \\
G: Z(G) & =8!/ 2 . \\
G: Z(G) & =7 \cdot 3 \cdot 2^{3}=168 . \\
G: Z(G) & =7 \cdot 3^{3} \cdot 2^{5}=6048 . \\
G: Z(G) & =7 \cdot 5 \cdot 3^{4} \cdot 2^{9} .
\end{aligned}
$$

IX. $G / Z(G)$ is an extension of V, VI, VII by an automorphism of order 2 or an extension of IV by an automorphism of order 3. For V it is $S_{8}$, for VI it is induced by PL(2, 7). For VII it is induced by a field automorphism and is $G_{2}(2)$. The extension of IV is induced by a field automorphism.

Remarks. a. In the cases III-IX, $Z(G)$ has order 1 or 7. If it has order 7 there is a subgroup $G_{1}$ such that $G \cong G_{1} \times Z(G)$.
b. A group satisfying all the hypotheses of Theorem 1 except for primitivity is a monomial group. In this case there is a normal abelian

[^0]
[^0]:    ${ }^{1}$ This work was the author's doctoral dissertation at Harvard University under the supervision of Professor R. Brauer. It was supported by the Canadian National Research Council.

