FINITE LINEAR GROUPS IN SEVEN VARIABLES¹

BY DAVID B. WALES

Communicated by Walter Feit, August 22, 1967

If G is a finite group which has a faithful complex representation of degree n it is said to be a linear group in n variables. This is equivalent to saying G is a finite group of complex linear transformations. It is customary to consider only unimodular linear transformations. For $n \le 4$ these groups have been known for a long time. An account may be found in Blichfeldt's book [1]. For n=5 they were determined by R. Brauer in [2]. Results in [2] are used to prove the following theorem for n=7.

THEOREM 1. If G has a complex irreducible representation of degree 7 which is faithful, unimodular, and primitive, then G is one of the following groups. Here Z(G) is the center of G.

I. G is a uniquely determined group of order 7⁴ ⋅ 48 which has a normal subgroup D of order 7³, G/D≅SL(2, 7). D is nonabelian with exponent 1.
II. Certain subgroups of G in I of order 7³ ⋅ s where s 48. These con-

tain D.

III. $G/Z(G) \cong PSL(2, 13)$	G: Z(G)	$= 13 \cdot 7 \cdot 3 \cdot 2^2.$
IV. $G/Z(G) \cong PSL(2, 8)$	G: Z(G)	$=7 \cdot 3^2 \cdot 2^3 = 504.$
	G: Z(G)	
		$= 7 \cdot 3 \cdot 2^3 = 168.$
VII. $G/Z(G) \cong PSU(3, 9)$	G: Z(G)	$=7 \cdot 3^3 \cdot 2^5 = 6048.$
VIII. $G/Z(G) \cong S_{6}(2)$	G: Z(G)	$= 7 \cdot 5 \cdot 3^4 \cdot 2^9.$

IX. G/Z(G) is an extension of V, VI, VII by an automorphism of order 2 or an extension of IV by an automorphism of order 3. For V it is S_8 , for VI it is induced by PL(2, 7). For VII it is induced by a field automorphism and is $G_2(2)$. The extension of IV is induced by a field automorphism.

REMARKS. a. In the cases III-IX, Z(G) has order 1 or 7. If it has order 7 there is a subgroup G_1 such that $G \cong G_1 \times Z(G)$.

b. A group satisfying all the hypotheses of Theorem 1 except for primitivity is a monomial group. In this case there is a normal abelian

¹ This work was the author's doctoral dissertation at Harvard University under the supervision of Professor R. Brauer. It was supported by the Canadian National Research Council.