STRONGLY CONVEX METRICS IN CELLS ${ }^{1}$

BY DALE ROLFSEN

Communicated by R. H. Bing, August 17, 1967
The following question was raised by Bing in [2]: "If an n-dimensional compact topological space has a metric which is strongly convex and without ramifications (defined below), is it necessarily homeomorphic to the Euclidean n-cell?" Lelek and Nitka [5] answered this affirmatively for $n \leqq 2$; we outline below a proof that the answer is also yes when $n=3$. Although the question remains open in higher dimensions, we also give an affirmative answer when the space is assumed to be a manifold (=manifold with boundary) and $n \neq 4$ or 5 . In fact with this further assumption we may omit the "without ramifications" requirement when $n \leqq 3$.

If X is a space and $x, y, m \in X$, then m is called a midpoint of x and y (with respect to a metric d on X) if $d(x, m)=d(m, y)=\frac{1}{2} d(x, y)$. The metric is strongly convex (SC) if each pair of points has a unique midpoint and without ramifications (WR) if no midpoint of x and y is a midpoint of x^{\prime} and y unless $x^{\prime}=x$. Both of these properties are enjoyed by the usual metric on Euclidean spaces and cells, and they are preserved under cartesian products in the following sense:

Proposition 1. If d_{i} is $a \mathrm{SC}$ (or WR) metric on $X_{i}, i=1, \cdots, n$ then $d(x, y)=\sum\left[d_{i}\left(x_{i}, y_{i}\right)^{2}\right]^{1 / 2}$ determines a SC (resp. WR) metric on $X=X_{1} \times \cdots \times X_{n}$. (Here x_{i} denotes the i th coordinate of $x=\left\{x_{i}\right\} \in X$ and the sum extends over $i=1, \cdots, n$.)

Indeed an easy exercise in inequalities verifies that $\left\{m_{i}\right\}$ is a midpoint of $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ in (X, d) iff each m_{i} is a midpoint of x_{i} and y_{i} in (X_{i}, d_{i}).

Strongly convex metrics. Joining any two points in a complete SC metric space, there is a unique arc (called a segment) which is isometric to a closed interval of the real line [7]. It follows that the intersection of any two segments is connected or empty. In a compact SC metric space, segments vary continuously with their endpoints, allowing one to imitate some of the tricks available in Euclidean space. For example, by moving points along segments toward a fixed basepoint we can obtain deformations of the space and prove (see [2])

[^0]
[^0]: ${ }^{1}$ These results are a portion of the author's Ph.D. thesis, written under Joseph Martin at the University of Wisconsin.

