THE IMPOSSIBILITY OF FILLING E^{n} WITH ARCS

BY STEPHEN L. JONES ${ }^{1}$
Communicated by R. H. Bing, August 17, 1967

The purpose of this paper is to outline a proof of the following
Main Theorem. Iff is a closed continuous map of E^{n} onto any space S, then some point in S has an inverse image which is not an arc.

In 1936 J. H. Roberts [1] showed that there does not exist an upper semicontinuous (usc) collection of arcs filling the plane. Recently L. B. Treybig [2] has obtained some partial results for polygonal arcs in E^{n}. In 1955 Eldon Dyer [3] outlined a proof that there is no continuous decomposition of E^{n} into arcs. This proof incorporates some of the ideas of both Roberts and Dyer.

We will suppose that all statements are for E^{n} for a given n.
Definitions. If U and V are sets with disjoint closures, we say that an $\operatorname{arc} \alpha$ has k folds between U and V if α contains $k+1$ disjoint subarcs between U and V. Furthermore, if the distance between each pair of the $k+1$ subarcs is greater than ϵ, we say that the width of the folds is greater than ϵ. If α contains a subarc which has endpoints in U and which intersects V, then α is said to have a fold with the bend in V.

If K is a set, $\epsilon>0$, let $N_{\epsilon}(K)$ denote the open ϵ-neighborhood of K in E^{n}. If H is a collection of sets, let H^{*} denote the set of all points covered by elements of H.

Suppose A is compact and B is a closed subset of A. If any two points of $E^{n}-A$ which are separated by A are also separated by B, then B is said to be essential in A. If H is a usc collection of arcs and points filling A and B intersects each element of H, then B is said to be full in A^{H}. If B meets each element of H in a continuum, then B is said to be a quasi-section of A^{H}.

Assume H is a usc collection of arcs and points filling the compact set X.

Lemma 1. If Y is a quasi-section of $X^{\boldsymbol{H}}$ then Y is essential in X.
The proof is an exercise in the Vietoris mapping theorem on the Cech homologies of X, Y, and the decomposition space.

Lemma 2. If K is full in X^{H}, U is open, $\bar{U} \cap K=\varnothing$, and no element

[^0]
[^0]: ${ }^{1}$ The results presented in this paper are a part of the author's Ph.D. thesis at the University of Wisconsin, written under the direction of Professor R. H. Bing.

