INTERMEDIATE EXTENSIONS IN L^p

BY MARTIN SCHECHTER¹

Communicated by Jürgen Moser, May 16, 1967

1. Introduction. Let A(x, D) be an elliptic operator defined on Euclidean *n*-dimensional space and let q(x) be a locally square integrable function. Let A_0 and B_0 denote the operators A(x, D) and A(x, D)+q(x) acting on the set C_0^{∞} of infinitely differentiable functions, respectively. Under suitable regularity conditions on the coefficients of A(x, D) the minimal and maximal closed extension of A_0 in L^p coincide for 1 . Without further restrictions on <math>q, this is not true for B_0 .

The purpose of the present investigation is to find sufficient conditions on q such that some closed extension of B_0 will have the same essential spectrum as the closure A of A_0 . For p=2 we found it convenient in [11] to employ regularly accretive extensions introduced by Kato [13]. However, this theory employs Hilbert space structure and is unapplicable for $p \neq 2$. Moreover, some of the L^2 estimates employed in [11] have no known counterparts in L^p for $p \neq 2$.

Our approach has been to develop a theory of extensions in Banach space which generalizes Kato's development. We call such operators "intermediate extensions." Under suitable conditions on q(x) we are able to show that these extensions have the desired properties.

2. Intermediate extensions. Let A_0 be a densely defined, preclosed linear operator from a Banach space X to a Banach space Y. Then $D(A_0^*)$ is weakly* dense in Y*. Let S be a linear manifold in $D(A_0^*)$ which is also weakly* dense in Y*. We consider all closed extensions A of A_0 such that $D(A^*) \supseteq S$. The closure \overline{A} of A_0 is the smallest such extension and therefore will be called the *minimal* extension of A_0 . There is a largest such extension \widetilde{A} . $D(\widetilde{A})$ consists of those $u \in X$ for which there is an $f \in Y$ satisfying

$$(u, A_0^{\dagger}v) = (f, v) \quad \text{for all } v \in S.$$

....

We then set $\tilde{A} = f$. This operator is well defined, for if $(u, A_0^*v) = (g, v)$ for all $v \in S$, then (f-g, v) = 0 for all such v. Since S is weakly* dense in Y^* , we have f = g. Moreover, if A is any closed extension of A_0 with $D(A^*) \supseteq S$, then

¹ Research done in part under grant GP-6888 from the National Science Foundation.