INTERMEDIATE EXTENSIONS IN L^{p}

BY MARTIN SCHECHTER ${ }^{1}$

Communicated by Jürgen Moser, May 16, 1967

1. Introduction. Let $A(x, D)$ be an elliptic operator defined on Euclidean n-dimensional space and let $q(x)$ be a locally square integrable function. Let A_{0} and B_{0} denote the operators $A(x, D)$ and $A(x, D)+q(x)$ acting on the set C_{0}^{∞} of infinitely differentiable functions, respectively. Under suitable regularity conditions on the coefficients of $A(x, D)$ the minimal and maximal closed extension of A_{0} in L^{p} coincide for $1<p<\infty$. Without further restrictions on q, this is not true for B_{0}.

The purpose of the present investigation is to find sufficient conditions on q such that some closed extension of B_{0} will have the same essential spectrum as the closure A of A_{0}. For $p=2$ we found it convenient in [11] to employ regularly accretive extensions introduced by Kato [13]. However, this theory employs Hilbert space structure and is unapplicable for $p \neq 2$. Moreover, some of the L^{2} estimates employed in [11] have no known counterparts in L^{p} for $p \neq 2$.

Our approach has been to develop a theory of extensions in Banach space which generalizes Kato's development. We call such operators "intermediate extensions." Under suitable conditions on $q(x)$ we are able to show that these extensions have the desired properties.
2. Intermediate extensions. Let A_{0} be a densely defined, preclosed linear operator from a Banach space X to a Banach space Y. Then $D\left(A_{0}^{*}\right)$ is weakly* dense in Y^{*}. Let S be a linear manifold in $D\left(A_{0}^{*}\right)$ which is also weakly* dense in Y^{*}. We consider all closed extensions A of A_{0} such that $D\left(A^{*}\right) \supseteq S$. The closure \bar{A} of A_{0} is the smallest such extension and therefore will be called the minimal extension of A_{0}. There is a largest such extension $\tilde{A} . D(\widetilde{A})$ consists of those $u \in X$ for which there is an $f \in Y$ satisfying

$$
\left(u, A_{0}^{*} v\right)=(f, v) \quad \text { for all } v \in S
$$

We then set $\tilde{A} u=f$. This operator is well defined, for if ($u, A_{0}^{*} v$) $=(g, v)$ for all $v \in S$, then $(f-g, v)=0$ for all such v. Since S is weakly* dense in Y^{*}, we have $f=g$. Moreover, if A is any closed extension of A_{0} with $D\left(A^{*}\right) \supseteq S$, then

[^0]
[^0]: ${ }^{1}$ Research done in part under grant GP-6888 from the National Science Foundation.

