PROOF. Let $G = \sum \{G_n | n \in J\}$ where G_n is solvable of radical class n. Then $G \in \mathfrak{G}$ and has radical class ω . Let $H = \prod \{H_k | k \in J, H_k \simeq G\}$. H has a subgroup satisfying the hypothesis of Theorem 3. Hence $H \notin \mathfrak{L}$. Consequently, $H \notin \mathfrak{G}$.

Classes of groups satisfying the conditions of Theorems 4 and 5 include the classes SN^* , SI^* , subsolvable and polycyclic.

BIBLIOGRAPHY

1. P. Hall, On non-strictly simple groups, Proc. Cambridge Philos. Soc. 59 (1963), 531-553.

2. J. I. Merzulakov, On the theory of generalized solvable and nilpotent groups, Algebra i Logika Sem. 2 (1963), 29-36. (Russian)

B. I. Plotkin, Radical groups, Amer. Math. Soc. Transl. (2) 17 (1961), 9-28.
W. R. Scott, Group theory, Prentice Hall, Englewood Cliffs, N. J., 1965.

UNIVERSITY OF KANSAS

ALGEBRAIZATION OF ITERATED INTEGRATION ALONG PATHS¹

BY KUO-TSAI CHEN

Communicated by Saunders Mac Lane June 12, 1967

If Ω is the vector space of C^{∞} 1-forms on a C^{∞} manifold M, then iterated integrals along a piecewise smooth path α : $[0, l] \rightarrow M$ can be inductively defined as below:

For $r \geq 2$ and $w_1, w_2, \cdots, \in \Omega$,

$$\int_{\alpha} w_1 \cdots w_r = \int_0^l \left(\int_{\alpha^t} w_1 \cdots w_{r-1} \right) w_r(\alpha(t), \dot{\alpha}(t)) dt$$

where $\alpha^t = \alpha \mid [0, t]$. (See [3].)

This note is based on the following algebraic properties of the iterated integration:

(a) $(\int_{\alpha} w_1 \cdots w_r) (\int_{\alpha} w_{r+1} \cdots w_{r+s}) = \sum \int_{\alpha} w_{\sigma(1)} \cdots w_{\sigma(r+s)}$ summing over all (r,s)-shuffles, i.e. those permutations σ of $\{1, \cdots, r+s\}$ with $\sigma^{-1}(1) < \cdots < \sigma^{-1}(r), \ \sigma^{-1}(r+1) < \cdots < \sigma^{-1}(r+s).$

(b) If $p = \alpha(0)$ and if f is any C^{∞} function on M, then

$$\int_{a} fw = \int_{a} (df)w + f(p) \int_{a} w.$$

¹ The work has been partially supported by the National Science Foundation under Grant NSF-GP-5423.