PROOF. Let $G = \sum \{G_n | n \in J\}$ where G_n is solvable of radical class *n*. Then $G \in \mathcal{B}$ and has radical class ω . Let $H = \prod \{ H_k | k \in J, H_k \simeq G \}$. H has a subgroup satisfying the hypothesis of Theorem 3. Hence $H \notin \mathcal{L}$. Consequently, $H \notin \mathcal{B}$.

Classes of groups satisfying the conditions of Theorems 4 and 5 include the classes *SN*, SI*,* subsolvable and polycyclic.

BIBLIOGRAPHY

1. P. Hall, *On non-strictly simple groups,* Proc. Cambridge Philos. Soc. 59 (1963), 531-553.

2. J. I. Merzulakov, *On the theory of generalized solvable and nilpotent groups,* Algebra i Logika Sem. 2 (1963), 29-36. (Russian)

3. B. I. Plotkin, *Radical groups,* Amer. Math, Soc. Transi. (2) 17 (1961), 9-28. 4. W. R. Scott, *Group theory,* Prentice Hall, Englewood Cliffs, N. J., 1965.

UNIVERSITY OF KANSAS

ALGEBRAIZATION OF ITERATED INTEGRATION ALONG PATHS¹

BY KUO-TSAI CHEN

Communicated by Saunders Mac Lane June 12, 1967

If Ω is the vector space of C^{∞} 1-forms on a C^{∞} manifold M, then iterated integrals along a piecewise smooth path α : $[0, l] \rightarrow M$ can be inductively defined as below:

For $r \geq 2$ and $w_1, w_2, \cdots, \in \Omega$,

$$
\int_{\alpha} w_1 \cdots w_r = \int_0^1 \left(\int_{\alpha^t} w_1 \cdots w_{r-1} \right) w_r(\alpha(t), \dot{\alpha}(t)) dt
$$

where $\alpha^t = \alpha \begin{bmatrix} 0, t \end{bmatrix}$. (See [3].)

This note is based on the following algebraic properties of the iterated integration:

(a) $(\int_{\alpha} w_1 \cdots w_r)(\int_{\alpha} w_{r+1} \cdots w_{r+s}) = \sum \int_{\alpha} w_{\sigma(1)} \cdots w_{\sigma(r+s)}$ summing over all (r,s) -shuffles, i.e. those permutations σ of $\{1, \cdots, r+s\}$ with $\sigma^{-1}(1) < \cdots < \sigma^{-1}(r)$, $\sigma^{-1}(r+1) < \cdots < \sigma^{-1}(r+s)$.

(b) If $p = \alpha(0)$ and if f is any C^{∞} function on M, then

$$
\int_{a} f w = \int_{a} (df) w + f(p) \int_{a} w.
$$

¹ The work has been partially supported by the National Science Foundation under Grant NSF-GP-5423.