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1. Outline, We consider an algebra (i.e. an associative algebra or 
a Lie algebra) A and a subalgebra B. Then B} A and also A/B are 
(two-sided) 5-modules in the obvious fashion. The exact sequence of 
coefficient modules 

0-±B^A^>A/B->0 

induces on the (graded) Hochschild [resp. Eilenberg-Mac Lane] coho-
mology modules the exact triangle of homomorphisms 

H*(B, B) - >H*(B, A) 

(1) \ « * / 7T* 

H*(B, A/B) 

The product operation in B, and similarly in A, induces a graded Lie 
algebra (GLA) structure (here called the cup structure) on H*(B, B) 
and H*(B, A) (cf., e.g., Gerstenhaber [2], Nijenhuis and Richardson 
[6]), and i* is known to be a homomorphism of these structures. The 
cup structure on H*(B, B) is abelian; cf. [2]. I t is also known that 
H*(B, B) has another GLA structure (here called the comp structure) 
with respect to the reduced grading (elements of Hn(B, B) have re­
duced degree w — 1; cf. [2], [7]). The following theorem supplements 
this information. 

THEOREM. Let A be an algebra, B a subalgebra and let A/B have its 
natural structure as a B-module. Then H*(B, A/B) has a GLA structure 
{cup structure). The maps i* and 7r* in the exact triangle (1) are homo-
morphisms of cup structures. The image of i* belongs to the center of 
H*(B, A). The map ô* is a homomorphism between the cup structure of 
H*(B, A/B) and the comp structure ofH*(B, B). 

The theorem has immediate relevance for the theory of deforma­
tions. Hl{By A) is the set of infinitesimal non trivial deformations of 
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