A COMBINATORIAL COINCIDENCE PROBLEM

BY Z. A. MELZAK ${ }^{1}$
Communicated by N. Levinson, July 7, 1967

Let $A \subset E^{m}(m \geqq 1)$, let $B(o) \subset E^{m}$ be convex with center of symmetry at o, let n and p be integers ($1 \leqq p \leqq n, n \geqq 2$), and let $f(u)$ be an integrable function defined on A. Let A^{n} be the Cartesian product of A with itself n times and define $Y \subset A^{n}$ by

$$
\begin{aligned}
& Y=\left\{x=\left(x_{1}, \cdots, x_{n}\right): \bigcap_{k=1}^{p} B\left(x_{i_{k}}\right) \neq \varnothing\right. \\
&\left.\quad \text { for some } i_{1}, \cdots, i_{p}, 1 \leqq i_{1}<\cdots<i_{p} \leqq n\right\}
\end{aligned}
$$

The problem of evaluating $J=\int_{Y} \prod_{1}^{n} f\left(x_{i}\right) d x_{1} \cdots d x_{n}$ generalizes a number of questions in probability, queuing theory, scattering, statistical mechanics etc., [1], [2]. Put

$$
\begin{aligned}
M=\binom{n}{p}, S_{i_{1} \cdots i_{p}} & =\left\{\left(x_{1}, \cdots, x_{n}\right): \bigcap_{s=1}^{p} B\left(x_{i_{s}}\right) \neq \varnothing\right\}, F(x) \\
& =\prod_{1}^{n} f\left(x_{i}\right), d V=d x_{1} \cdots d x_{n}
\end{aligned}
$$

and let the M sets $S_{i_{1} \cdots i_{p}}$ be enumerated as $\left\{S_{k}\right\}, k=1, \cdots, M$. Then by the inclusion-exclusion principle [2]

$$
\begin{align*}
J & =\sum_{r=1}^{n}(-1)^{r+1}\left[\sum_{1 \leq k_{1}<\cdots<k_{r} \leq M} \int_{S_{k_{1}} \cap \cdots S_{k_{r}}} F(x) d V\right] \tag{1}\\
& =\sum_{r=1}^{n}(-1)^{r+1} U_{r}
\end{align*}
$$

say. To help us keep track of different r-tuples of p-tuples, we introduce a generalization of graphs. Let X be a regular simplex in E^{n-1} with the vertices w_{1}, \cdots, w_{n}, a (d-dimensional) hypergraph G on X is just a collection of some of the $\left(C_{d+1}^{n}\right) d$-dimensional faces of X; the number of vertices of X lying in G will be denoted by $v(G) . G$ is called a (B, r)-hypergraph on X if it consists of r such d-faces and if there are some $v=v(G)$ translates B_{1}, \cdots, B_{v} of B such that any $d+1$ of them, say B_{1}, \cdots, B_{d+1}, intersect if the corresponding vertices w_{1}, \cdots, w_{d+1} lie in a d-face of X included in G.

[^0]
[^0]: ${ }^{1}$ Permanent address: Dept. of Mathematics, University of British Columbia.

