A COMBINATORIAL COINCIDENCE PROBLEM

BY Z. A. MELZAK¹

Communicated by N. Levinson, July 7, 1967

Let $A \subset E^m$ $(m \ge 1)$, let $B(o) \subset E^m$ be convex with center of symmetry at o, let n and p be integers $(1 \le p \le n, n \ge 2)$, and let f(u) be an integrable function defined on A. Let A^n be the Cartesian product of A with itself n times and define $Y \subset A^n$ by

$$Y = \left\{ x = (x_1, \cdots, x_n) : \bigcap_{k=1}^{p} B(x_{i_k}) \neq \emptyset \right.$$

for some $i_1, \cdots, i_p, \ 1 \leq i_1 < \cdots < i_p \leq n \right\}.$

The problem of evaluating $J = \int_Y \prod_{i=1}^n f(x_i) dx_1 \cdots dx_n$ generalizes a number of questions in probability, queuing theory, scattering, statistical mechanics etc., [1], [2]. Put

$$M = \binom{n}{p}, S_{i_1\cdots i_p} = \left\{ (x_1, \cdots, x_n) : \bigcap_{s=1}^p B(x_{i_s}) \neq \emptyset \right\}, F(x)$$
$$= \prod_1^n f(x_i), \ dV = dx_1 \cdots dx_n$$

and let the *M* sets $S_{i_1\cdots i_p}$ be enumerated as $\{S_k\}, k=1, \cdots, M$. Then by the inclusion-exclusion principle [2]

(1)
$$J = \sum_{r=1}^{n} (-1)^{r+1} \left[\sum_{1 \le k_1 < \cdots < k_r \le M} \int_{S_{k_1} \cap \cdots \cap S_{k_r}} F(x) dV \right]$$
$$= \sum_{r=1}^{n} (-1)^{r+1} U_r,$$

say. To help us keep track of different r-tuples of p-tuples, we introduce a generalization of graphs. Let X be a regular simplex in E^{n-1} with the vertices w_1, \dots, w_n , a (d-dimensional) hypergraph G on X is just a collection of some of the (C_{d+1}^n) d-dimensional faces of X; the number of vertices of X lying in G will be denoted by v(G). G is called a (B, r)-hypergraph on X if it consists of r such d-faces and if there are some v=v(G) translates B_1, \dots, B_v of B such that any d+1 of them, say B_1, \dots, B_{d+1} , intersect if the corresponding vertices w_1, \dots, w_{d+1} lie in a d-face of X included in G.

¹ Permanent address: Dept. of Mathematics, University of British Columbia.