GENERATORS FOR SOME RINGS OF ANALYTIC FUNCTIONS

BY LARS HÖRMANDER

Communicated by R. C. Buck, July 10, 1967

Let Ω be an open set in \mathbb{C}^n and let p be a nonnegative function defined in Ω . We shall denote by $A_p(\Omega)$ the set of all analytic functions f in Ω such that for some constants C_1 and C_2

(1)
$$|f(z)| \leq C_1 \exp(C_2 p(z)), \quad z \in \Omega.$$

It is obvious that $A_p(\Omega)$ is a ring. We wish to determine when it is generated by a given finite set of elements f_1, \dots, f_N . There is an obvious necessary condition, for if f_1, \dots, f_N are generators for $A_p(\Omega)$ we can in particular find $g_1, \dots, g_N \in A_p(\Omega)$ so that $1 = \sum f_j g_j$. Hence we have

$$1 \leq \sum |f_j(z)| C_1 \exp(C_2 p(z))|$$

for some constants C_1 and C_2 , that is,

(2) $|f_1(z)| + \cdots + |f_N(z)| \ge c_1 \exp(-c_2 p(z)), \quad z \in \Omega,$

for some positive constants c_1 and c_2 .

This note concerns the converse statement. Carleson [1] has proved a deep result of that type, called the Corona Theorem, which states that (2) implies that f_1, \dots, f_N generate $A_p(\Omega)$ if p=0 and Ω is the unit disc in **C**. In a recent research announcement [5] in this Bulletin, the Corona Theorem was used to prove the analogous result when p(z) = |z| and $\Omega = \mathbf{C}$. However, we shall see here that this statement is much more elementary than the Corona Theorem; indeed, we shall prove a general result of this kind for functions of several complex variables although no analogue of the Corona Theorem is known there.

THEOREM 1. Let p be a plurisubharmonic function in the open set $\Omega \subset \mathbb{C}^n$ such that

(i) all polynomials belong to $A_p(\Omega)$;

(ii) there exist constants K_1, \dots, K_4 such that $z \in \Omega$ and $|z-\zeta| \leq \exp(-K_1p(z)-K_2) \Rightarrow \zeta \in \Omega$ and $p(\zeta) \leq K_3p(z)+K_4$.

Then $f_1, \dots, f_N \in A_p(\Omega)$ generate $A_p(\Omega)$ if and only if (2) is valid.

Before the proof we make a few remarks. First note that if d(z)