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In this paper all spaces, including compactifications, are separable 
metrizable. Recall the following definitions. A space X is strongly 
countable dimensional if X is a countable union of closed finite-
dimensional subsets. X is a GÔ space if X is a Gô-set in each space in 
which it is topologically embedded. A space F is a pseudo-polytope if 
F=2iVJ22W • • • , where each 2* is a simplex, 2;P\2y is either empty 
or a face of both 2* and 2y, and diam 2»—>0 as i—» oo. The term map 
always denotes a continuous function. Other notation is as in [3] 
and [8]. 

In [5] Lelek proved that every Ga-space X has a compactification 
dX such that dX\X is a pseudo-polytope. He then raised the question 
of whether every strongly countable dimensional G$ space X has a 
strongly countable dimensional compactification. This paper an­
swers that question in the affirmative. We first state some prelim­
inary propositions. 

PROPOSITION I.Let MQXwithdim M^n,andlet { £/»|i = l, 2, • • • } 
be a sequence of sets open in X and covering M. Then there is a sequence 
{ Vi\i=l, 2, • • • } of sets open in X and covering M such that 
ord{ Ft-|i = l, 2, • • • } ^n+1 and such that Vk(n+i)+j(ZUk+i for 
k = 0, 1, 2, • • • andj^l, 2, • • • , n+1. 

PROOF. The proof involves only a slight extension of the argument 
on page 54 of [2]. 

PROPOSITION 2. Let G be an open subset of a totally bounded space 
F, and let Mi, ikf2, • • • , Mr be relatively closed subsets of G with 
dim Mi~nii< 00 for i = l, 2, • • • , r. Let e>0 . Then there is a collec­
tion {Gi\i=l, 2, • • • } such that G~\J£,iGiand 

(i) Each Gi is open in F. 
(ii) { G i l ^ l , 2, • • • } is star-finite. 
(iii) GiCGfori^l, 2, • • - . 

1 This paper was written in partial fulfillment of the requirements for the degree 
of Doctor of Philosophy. 
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