COMPACTIFICATION OF STRONGLY COUNTABLE DIMENSIONAL SPACES¹

BY ARLO W. SCHURLE

Communicated by R. H. Bing, May 22, 1967

In this paper all spaces, including compactifications, are separable metrizable. Recall the following definitions. A space X is strongly countable dimensional if X is a countable union of closed finite-dimensional subsets. X is a G_{δ} space if X is a G_{δ} -set in each space in which it is topologically embedded. A space Y is a pseudo-polytope if $Y = \Sigma_1 \cup \Sigma_2 \cup \cdots$, where each Σ_i is a simplex, $\Sigma_i \cap \Sigma_j$ is either empty or a face of both Σ_i and Σ_j , and diam $\Sigma_i \to 0$ as $i \to \infty$. The term map always denotes a continuous function. Other notation is as in [3] and [8].

In [5] Lelek proved that every G_{δ} -space X has a compactification dX such that $dX \setminus X$ is a pseudo-polytope. He then raised the question of whether every strongly countable dimensional G_{δ} space X has a strongly countable dimensional compactification. This paper answers that question in the affirmative. We first state some preliminary propositions.

PROPOSITION 1. Let $M \subset X$ with dim $M \leq n$, and let $\{U_i | i=1, 2, \cdots\}$ be a sequence of sets open in X and covering M. Then there is a sequence $\{V_i | i=1, 2, \cdots\}$ of sets open in X and covering M such that ord $\{V_i | i=1, 2, \cdots\} \leq n+1$ and such that $V_{k(n+1)+j} \subset U_{k+1}$ for $k=0, 1, 2, \cdots$ and $j=1, 2, \cdots, n+1$.

PROOF. The proof involves only a slight extension of the argument on page 54 of [2].

PROPOSITION 2. Let G be an open subset of a totally bounded space Y, and let M_1, M_2, \dots, M_r be relatively closed subsets of G with dim $M_i = m_i < \infty$ for $i = 1, 2, \dots, r$. Let $\epsilon > 0$. Then there is a collection $\{G_i | i = 1, 2, \dots\}$ such that $G = \bigcup_{i=1}^{\infty} G_i$ and

- (i) Each G, is open in Y.
- (ii) $\{G_i | i=1, 2, \cdots \}$ is star-finite.
- (iii) $\overline{G}_i \subset G$ for $i=1, 2, \cdots$.

¹ This paper was written in partial fulfillment of the requirements for the degree of Doctor of Philosophy.