SIMILARITY FOR SEQUENCES OF PROJECTIONS

BY TOSIO KATO ${ }^{1}$

Communicated by C. B. Morrey, Jr., July 7, 1967
We consider sequences $\left\{P_{n}\right\}_{n=0,1, \cdots}$ of (not necessarily selfadjoint) projections in a Hilbert space H satisfying the orthogonality conditions $P_{n} P_{m}=\delta_{m n} P_{n}$. For brevity, such a sequence $\left\{P_{n}\right\}$ will be called a p-sequence. A p-sequence $\left\{E_{n}\right\}$ is selfadjoint if $E_{n}^{*}=E_{n}$ for all n. A selfadjoint p-sequence $\left\{E_{n}\right\}$ is complete if $\sum E_{n}$, which always converges strongly, is equal to the identity.
The object of this note is to prove the following theorem.
Theorem. Let $\left\{P_{n}\right\}$ be a p-sequence, and $\left\{E_{n}\right\}$ a complete selfadjoint p-sequence. Furthermore, assume that

$$
\begin{equation*}
\operatorname{dim} P_{0}=\operatorname{dim} E_{0}=m<\infty \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|E_{n}\left(P_{n}-E_{n}\right) u\right\|^{2} \leqq c^{2}\|u\|^{2} \quad \text { for all } u \in H \tag{2}
\end{equation*}
$$

where c is a constant such that $0 \leqq c<1$. Then $\left\{P_{n}\right\}$ is similar to $\left\{E_{n}\right\}$, that is, there exists a nonsingular linear operator W such that

$$
\begin{equation*}
P_{n}=W^{-1} E_{n} W, \quad n=0,1,2, \cdots \tag{3}
\end{equation*}
$$

Proof. First we shall show that

$$
\begin{equation*}
W=\sum_{n=0}^{\infty} E_{n} P_{n} \tag{4}
\end{equation*}
$$

exists in the strong sense. Since $\sum E_{n}=1$ strongly, it suffices to show that $\sum\left(E_{n}-E_{n} P_{n}\right)=\sum E_{n}\left(E_{n}-P_{n}\right)$ converges strongly. But this is true since

$$
\begin{equation*}
\left\|\sum_{n=m}^{m+p} E_{n}\left(E_{n}-P_{n}\right) u\right\|^{2}=\sum_{n=m}^{m+p}\left\|E_{n}\left(E_{n}-P_{n}\right) u\right\|^{2} \rightarrow 0, \quad m \rightarrow \infty, \tag{5}
\end{equation*}
$$

by (2). Incidentally, we note that (5) implies $\|A\| \leqq c<1$, where

$$
\begin{equation*}
A=\sum_{n=1}^{\infty} E_{n}\left(E_{n}-P_{n}\right)=1-E_{0}-\sum_{n=1}^{\infty} E_{n} P_{n} \tag{6}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ This work represents part of the results obtained while the author held a Miller Research Professorship.

