INVOLUTIONS OF HOMOTOPY SPHERES AND HOMOLOGY 3-SPHERES

BY SANTIAGO LÓPEZ DE MEDRANO

Communicated by William Browder, May 18, 1967

1. Introduction. Let Σ^{4n+3} be a homotopy sphere and $T: \Sigma \to \Sigma$ a fixed point free differentiable involution. A characteristic submanifold for T is a smoothly embedded submanifold $W^{4n+2} \subset \Sigma$, such that $W = A \cap TA$, $\Sigma = A \cup TA$, where A is a compact submanifold of Σ , $\partial A = W$. Let $i: W \to A$ be the inclusion, and $K = \ker i_*, i_*: H_{2n+1}(W)$ $\to H_{2n+1}(A)$. The symmetric bilinear pairing $K \otimes K \to Z$ defined by $x \otimes y \to x \cdot T_* y$ is called the quadratic form of T with respect to W, and its signature is denoted by $\sigma(T, \Sigma)$. It is proved in [2] that $\sigma(T, \Sigma)$ does not depend on the characteristic submanifold, and that for $n > 0, \sigma(T, \Sigma) = 0$ if and only if Σ contains an invariant smoothly embedded S^{4n+2} . These definitions can be made in the p.l. category and the corresponding properties hold. $\sigma(T, \Sigma)$ can also be defined when Σ is a homology sphere.

It is the purpose of this paper to give examples of involutions with $\sigma(T, \Sigma) \neq 0$.

2. We will make use of the following construction: Let M^n be a smooth manifold, and $T: \partial M \to \partial M$ a smooth involution. Consider another copy M^* of M, and the manifold $M' = M \cup_T M^*$, obtained from the disjoint union of M and M^* by identifying $T(x) \in \partial M$ with $x^* \in \partial M^*$. Then an involution $T': M' \to M'$ can be defined by $T'(x) = x^*$, $T'(x^*) = x$. $T' \mid \partial M = T$ and T' is fixed point free if and only if T is.

We will denote by U the square matrix with 1's in the nonprincipal diagonal and 0's elsewhere.

Let H be a $2k \times 2k$ integral matrix. We will consider the following conditions on H:

(i) det $H = \pm 1$.

(ii) There exist $2k \times 2k$ integral matrices P, Q, such that $H = PUP^{t} - QUQ^{t}$.

(iii) PQ^t is symmetric.

(iv) PQ^t has even integers in the main diagonal.

3. THEOREM 1. If H satisfies conditions (i)–(iv), then H can be realized as the matrix of the quadratic form of a fixed point free differentiable involution of a homotopy (4n+3)-sphere, n>0.