INVOLUTIONS OF HOMOTOPY SPHERES AND HOMOLOGY 3-SPHERES

BY SANTIAGO LÓPEZ DE MEDRANO

Communicated by William Browder, May 18, 1967

1. Introduction. Let $\Sigma^{4 n+3}$ be a homotopy sphere and $T: \Sigma \rightarrow \Sigma$ a fixed point free differentiable involution. A characteristic submanifold for T is a smoothly embedded submanifold $W^{4 n+2} \subset \Sigma$, such that $W=A \cap T A, \Sigma=A \cup T A$, where A is a compact submanifold of Σ, $\partial A=W$. Let $i: W \rightarrow A$ be the inclusion, and $K=\operatorname{ker} i_{*}, i_{*}: H_{2 n+1}(W)$ $\rightarrow H_{2 n+1}(A)$. The symmetric bilinear pairing $K \otimes K \rightarrow \boldsymbol{Z}$ defined by $x \otimes y \rightarrow x \cdot T_{*} y$ is called the quadratic form of T with respect to W, and its signature is denoted by $\sigma(T, \Sigma)$. It is proved in [2] that $\sigma(T, \Sigma)$ does not depend on the characteristic submanifold, and that for $n>0, \sigma(T, \Sigma)=0$ if and only if Σ contains an invariant smoothly embedded $S^{4 n+2}$. These definitions can be made in the p.l. category and the corresponding properties hold. $\sigma(T, \Sigma)$ can also be defined when Σ is a homology sphere.

It is the purpose of this paper to give examples of involutions with $\boldsymbol{\sigma}(T, \boldsymbol{\Sigma}) \neq 0$.
2. We will make use of the following construction: Let M^{n} be a smooth manifold, and $T: \partial M \rightarrow \partial M$ a smooth involution. Consider another copy M^{*} of M, and the manifold $M^{\prime}=M \cup_{T} M^{*}$, obtained from the disjoint union of M and M^{*} by identifying $T(x) \in \partial M$ with $x^{*} \in \partial M^{*}$. Then an involution $T^{\prime}: M^{\prime} \rightarrow M^{\prime}$ can be defined by $T^{\prime}(x)$ $=x^{*}, T^{\prime}\left(x^{*}\right)=x . T^{\prime} \mid \partial M=T$ and T^{\prime} is fixed point free if and only if T is.

We will denote by U the square matrix with 1 's in the nonprincipal diagonal and 0's elsewhere.

Let H be a $2 k \times 2 k$ integral matrix. We will consider the following conditions on H :
(i) $\operatorname{det} H= \pm 1$.
(ii) There exist $2 k \times 2 k$ integral matrices P, Q, such that H $=P U P^{t}-Q U Q^{t}$.
(iii) $P Q^{t}$ is symmetric.
(iv) $P Q^{t}$ has even integers in the main diagonal.
3. Theorem 1. If H satisfies conditions (i)-(iv), then H can be realized as the matrix of the quadratic form of a fixed point free differentiable involution of a homotopy $(4 n+3)$-sphere, $n>0$.

