SOME REMARKS ON PARALLELIZABLE STEIN MANIFOLDS

BY OTTO FORSTER ${ }^{1}$
Communicated by John Wermer, April 3, 1967

1. The purpose of this note is to collect some simple facts on the parallelizability of analytic submanifolds of the complex number space C^{N}, which are remarkable because their analogues in the real case fail to be true. Any analytic submanifold of C^{N} is a Stein manifold. (An analytic submanifold is closed in C^{N} by definition.) Conversely, every Stein manifold can be embedded in some C^{N}, i.e. mapped biholomorphically onto an analytic submanifold of C^{N}. An n-dimensional Stein manifold X is called parallelizable if there exists a holomorphic field of n-frames on X, i.e. n holomorphic vector fields which are linearly independent at every point $x \in X$. (We require throughout this paper that all connected components of a manifold have the same dimension.) By a theorem of Grauert [2], an n-dimensional Stein manifold X is parallelizable if and only if there exists a continuous field of (complex) n-frames on X. We connect the parallelizability with the notion of complete intersection: An n-dimensional analytic submanifold X of C^{N} is called a complete intersection, if the ideal $I(X)$ of all holomorphic functions on C^{N} which vanish on X can be generated by $N-n$ elements. This is the case if and only if there exist $N-n$ holomorphic functions f_{1}, \cdots, f_{N-n} on C^{N} such that

$$
X=\left\{x \in C^{N}: f_{1}(x)=\cdots=f_{N-n}(x)=0\right\}
$$

and the rank of the functional matrix of $\left(f_{1}, \cdots, f_{N-n}\right)$ equals $N-n$ at every point $x \in X$. We shall prove that a Stein manifold is parallelizable if and only if it can be embedded as a complete intersection in some complex number space C^{N}.
2. The following lemma expresses the duality between the normal and tangent bundle of an analytic submanifold of C^{N}.

Lemma. Let X be an n-dimensional analytic submanifold of C^{N}.
(i) If the normal bundle of X is trivial, then X is parallelizable.
(ii) If X is parallelizable and $N \geqq 3 n / 2$, then the normal bundle of X is trivial.

[^0]
[^0]: ${ }^{1}$ Supported by National Science Foundation grant GP-5803.

