SUBDIRECT PRODUCTS OF SEMIGROUPS AND RECTANGULAR BANDS

J. L. CHRISLOCK AND T. TAMURA¹

Communicated by Ivan Niven, May 5, 1967

Let $\{S_{\alpha}: \alpha \in A\}$ be a family of semigroups. If p_{α} is the natural projection from $\Pi\{S_{\alpha}: \alpha \in A\}$ onto S_{α} , then a subsemigroup D of $\Pi\{S_{\alpha}: \alpha \in A\}$ is called a subdirect product of $\{S_{\alpha}: \alpha \in A\}$ if $p_{\alpha}(D) = S_{\alpha}$ for all $\alpha \in A$.

If L and R are sets then the semigroup $B=L \times R$ with (λ_1, ρ_1) $\cdot (\lambda_2, \rho_2) = (\lambda_1, \rho_2)$ is called a rectangular band. Our main result, Theorem 1, determines all subdirect products of a semigroup S and a rectangular band B. Elements of $S \times B$ will be denoted by $(s; \lambda, \rho)$ $(s \in S, \lambda \in L, \rho \in R)$.

Proofs of the following results will appear elsewhere. See [1] for all undefined concepts.

THEOREM 1. Let S be a semigroup and $B = L \times R$ be a rectangular band. If \mathfrak{L} is the set of all left ideals of S and \mathfrak{R} is the set of all right ideals of S, then two mappings $\phi: L \to \mathfrak{R}$ and $\psi: R \to \mathfrak{L}$ satisfying

$$S = \bigcup \{ \phi(\lambda) : \lambda \in L \} = \bigcup \{ \psi(\rho) : \rho \in R \}$$

determine a subdirect product $D \subseteq S \times B$ by

$$D = \bigcup \{ D(\lambda, \rho) : (\lambda, \rho) \in B \},\$$

where

$$D(\lambda, \rho) = \{(x; \lambda, \rho) : x \in \phi(\lambda) \cap \psi(\rho)\}.$$

Moreover, the correspondence $(\phi, \psi) \rightarrow D$ is one-to-one onto the set of all subdirect products of S and B.

One application of this theorem is

COROLLARY 1. Let S be a semigroup and $B = L \times R$ be a rectangular band. The only subdirect product of S and B is the direct product of S and B if and only if one of the following is satisfied:

- (i) S is right simple, and B is a left zero semigroup, $B \cong L$,
- (ii) S is left simple, and B is a right zero semigroup, $B \cong R$,
- (iii) S is a group, or
- (iv) B is trivial, |B| = 1.

¹ This result is partly supported by NSF GP-5988.