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DEFINITIONS AND NOTATION. (1) 7 and #n denote positive integers.

(2) H* denotes Hausdorff % dimensional measure in R™t» for
k=m, m—1,

(3) G2*™ denotes the Grassmann manifold of unoriented m plane
directions in R™+» (which can be regarded as the space of all unori-
ented m planes through the origin in R7+7).

(4) A C® integrand [real analytic integrand] is a function [real
analytic function] F: Gr*"—RN{¢t: >0} whose partial derivatives
up to order k exist and are continuous. Here & denotes either a positive
integer or «.?

(5) A surface S is a compact m-rectifiable subset of R™t», If Sis a
surface, then, for H” almost all x &S, S has an approximate tangent
m plane direction at x, denoted S(x).

(6) The integral of an integrand F over a surface S is defined to be

F(S) = f F(S(x))dH™x.
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(7) A boundary B is a compact (m — 1)-rectifiable subset of R™*"
with H"1(B) < o,

(8) G denotes the category of all finitely generated abelian groups.
If B is a boundary, Sis a surface, and GE G, we denote by H,,_1(B; G)
and H,,1(BUS; G) the m—1 dimensional Vietoris homology groups
of B and B\US, respectively, with coefficients in G. If e EH,,_1(B; G)
we say that S spans o if and only if 74(c) =0 where

Tat Hm_l(B; G) - Hm_l(B v S, G)
is induced by the inclusion ¢: B—B\US.
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? The existence and regularity results of this paper have recently been extended to
apply to integrands F: Rm»XG,m*"—R which are elliptic on each tangent space.
For such integrands one sets F(S) = f F(x. S(x))d(HmS)x.
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