A NOTE ON MINIMAL VARIETIES ${ }^{1}$

JAMES SIMONS
Communicated by Eugenio Calabi, January 4, 1967

1. Introduction. In [1] Almgren considered the situation of a closed minimal variety H, of dimension 2 immersed in S^{3}. He observed that the second fundamental form, a real valued bilinear form on the tangent space to H, is in fact the real part of a holomorphic quadratic differential with respect to the conformal structure on H induced by the metric inherited from its immersion in S^{3}. He used this fact to conclude that S^{2} could not be immersed as a minimal variety in S^{3} unless it was already totally geodesic.

It turns out that under the most general circumstances the second fundamental form of a p-dim minimal subvariety of an n-dim Riemannian manifold satisfies a natural second-order elliptic differential equation which generalizes the holomorphic condition mentioned above. In the case that the ambient manifold is S^{n} the equation may be used to show that a closed minimal subvariety of S^{n}, of arbitrary codimension, which does not twist too much is already totally geodesic. In a sense this theorem is analogous to Bernstein's theorem for complete minimal subvarieties in R^{n}.
2. A standard operator. Let M be a Riemannian manifold ${ }^{2}$ of dimension n and $V(M)$ a d-dimensional vector bundle over M. Suppose the fibers of $V(M)$ carry a euclidean inner product and suppose there is given a connection in $V(M)$ which preserves this inner product. If W is a cross-section in $V(M)$ and $x \in T(M)_{m}$, the tangent space to M at m, we denote by $\nabla_{x} W$ the covariant derivative of W in the x direction. $\nabla_{x} W \in V(M)_{m}$.

Let $x, y \in T(M)_{m}$. We define $\nabla_{x, y} W \in V(M)$ as follows. Let Y be a vector field on M which extends y. We then set

$$
\begin{equation*}
\nabla_{x, y} W=\nabla_{x} \nabla_{Y} W-\nabla_{\nabla_{x} Y} W \tag{2.1}
\end{equation*}
$$

where $\nabla_{x} Y$ is ordinary covariant differentiation of a vector field on M with respect to the Riemannian connection. It is easy to see that this definition is independent of the choice of Y.

Let e_{1}, \cdots, e_{n} be an orthonormal basis of $T(M)_{m}$. If W is a crosssection in $V(M)$ we define $\nabla^{2} W$ by

[^0]
[^0]: ${ }^{1}$ Prepared with partial support from NSF GP 4503.
 ${ }^{2}$ All manifolds will be assumed to be orientable.

