ON NORMAL RIEMANNIAN HOMOGENEOUS SPACES OF RANK 1

BY ISAAC CHAVEL ${ }^{1}$

Communicated by E. Calabi, January 5, 1967
In this note we shall prove (cf. definitions in [2]) the following
Theorem. Let G / H be a simply connected normal Riemannian homogeneous space of rank 1 such that every point Q conjugate to $P_{0}=\pi(H)$ (π is the natural projection) is isotropically conjugate to P_{0}; then G / H is homeomorphic to a Riemannian symmetric space of rank 1.

1. Preliminaries. M. Berger [1] has classified the simply connected normal Riemannian homogeneous spaces of rank 1, and with the exception of two, viz, $\mathrm{Sp}(2) / \mathrm{SU}(2)$ and $\mathrm{SU}(5) /(\mathrm{Sp}(2) \times \mathrm{T})$ all are homeomorphic to a Riemannian symmetric space of rank 1. To prove the theorem it therefore suffices to exhibit in each of the spaces $\mathrm{Sp}(2) / \mathrm{SU}(2), \mathrm{SU}(5) /(\mathrm{Sp}(2) \times \mathrm{T})$ a conjugate point of $P_{0}=\pi(H)$ at which no isotropic Jacobi field vanishes. (A Jacobi field along a geodesic $\sigma(s)\left(\sigma(0)=P_{0}\right)$ is isotropic, if it is induded by a 1-parameter subgroup of H. A point at which at least one isotropic Jacobi field vanishes is said to be isotropically conjugate to P_{0}.) Furthermore, since the zeros (if they exist) of an isotropic Jacobi field occur only at integral multiples of a fixed real number (Lemma 1 of [2]), it suffices to exhibit in each case a Jacobi field along a geodesic emanating from P_{0}, vanishing for $s=\alpha$ and not for $s=2 \alpha$ ($s=$ arc length along the geodesic), such that no Jacobi field with periodic zeros vanishes for $s=\alpha$. In [2] we exhibited the desired Jacobi field for the space $\mathrm{Sp}(2) / \mathrm{SU}(2)$; and we now do the same for the second example.

The equations we will solve will read as:

$$
\begin{equation*}
\left.d^{2} \eta_{\alpha} / d s^{2}+\left\langle Q_{\alpha},\left[\lambda, Q_{\beta}\right]\right\rangle\left(d \eta_{\beta} / d s\right)+\left\langle Q_{\alpha},\left[\left[\lambda, Q_{\beta}\right]\right]_{\mathfrak{G}}, \lambda\right]\right\rangle \eta_{\beta}=0 \tag{1}
\end{equation*}
$$

α, β (repeated indices summed) $=1, \cdots, n=\operatorname{dim} G / H$. In equation (1), s denotes arc length along the geodesic, \langle,$\rangle the inner product on$ $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}, \mathfrak{m}=\mathfrak{h}^{\perp}, Q_{\alpha}$ an orthonormal basis of \mathfrak{m}, and $\lambda \in \mathfrak{m}$ the initial unit velocity vector of the geodesic-as usual \mathfrak{m} is identified with the tangent space of $P_{0}=\pi(H)[3] .[$,$] is the Lie multiplication in \mathfrak{g}$, and $[,]_{\mathfrak{h}}$ its projection onto \mathfrak{h}. We note that the matrices

$$
\begin{align*}
T_{\alpha \beta}(\lambda) & =\left\langle Q_{\alpha},\left[\lambda, Q_{\beta}\right]\right\rangle, \tag{2}\\
K_{\alpha \beta}(\lambda) & =\left\langle Q_{\alpha},\left[\left[\lambda, Q_{\beta}\right]_{\mathfrak{b}}, \lambda\right]\right\rangle \tag{3}
\end{align*}
$$

[^0]
[^0]: ${ }^{1}$ Partially supported by NSF Grant GP5760.

