ON NORMAL RIEMANNIAN HOMOGENEOUS SPACES OF RANK 1

BY ISAAC CHAVEL¹

Communicated by E. Calabi, January 5, 1967

In this note we shall prove (cf. definitions in [2]) the following

THEOREM. Let G/H be a simply connected normal Riemannian homogeneous space of rank 1 such that every point Q conjugate to $P_0 = \pi(H)$ (π is the natural projection) is isotropically conjugate to P_0 ; then G/His homeomorphic to a Riemannian symmetric space of rank 1.

1. **Preliminaries.** M. Berger [1] has classified the simply connected normal Riemannian homogeneous spaces of rank 1, and with the exception of two, viz, Sp(2)/SU(2) and $SU(5)/(Sp(2) \times T)$ all are homeomorphic to a Riemannian symmetric space of rank 1. To prove the theorem it therefore suffices to exhibit in each of the spaces Sp(2)/SU(2), $SU(5)/(Sp(2) \times T)$ a conjugate point of $P_0 = \pi(H)$ at which no isotropic Jacobi field vanishes. (A Jacobi field along a geodesic $\sigma(s)(\sigma(0) = P_0)$ is *isotropic*, if it is induded by a 1-parameter subgroup of H. A point at which at least one isotropic Jacobi field vanishes is said to be *isotropically conjugate* to P_0 .) Furthermore, since the zeros (if they exist) of an isotropic Jacobi field occur only at integral multiples of a fixed real number (Lemma 1 of [2]), it suffices to exhibit in each case a Jacobi field along a geodesic emanating from P_0 , vanishing for $s = \alpha$ and not for $s = 2\alpha$ (s = arc length along the geodesic), such that no Jacobi field with periodic zeros vanishes for $s = \alpha$. In [2] we exhibited the desired Jacobi field for the space Sp(2)/SU(2); and we now do the same for the second example.

The equations we will solve will read as:

(1)
$$d^2\eta_{\alpha}/ds^2 + \langle Q_{\alpha}, [\lambda, Q_{\beta}] \rangle (d\eta_{\beta}/ds) + \langle Q_{\alpha}, [[\lambda, Q_{\beta}]b, \lambda] \rangle \eta_{\beta} = 0,$$

 α, β (repeated indices summed) = 1, \cdots , $n = \dim G/H$. In equation (1), s denotes arc length along the geodesic, \langle , \rangle the inner product on $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}, \mathfrak{m} = \mathfrak{h}^{\perp}, Q_{\alpha}$ an orthonormal basis of \mathfrak{m} , and $\lambda \in \mathfrak{m}$ the initial unit velocity vector of the geodesic—as usual \mathfrak{m} is identified with the tangent space of $P_0 = \pi(H)$ [3]. [,] is the Lie multiplication in \mathfrak{g} , and [,] is projection onto \mathfrak{h} . We note that the matrices

(2) $T_{\alpha\beta}(\lambda) = \langle Q_{\alpha}, [\lambda, Q_{\beta}] \rangle,$

(3)
$$K_{\alpha\beta}(\lambda) = \langle Q_{\alpha}, [[\lambda, Q_{\beta}]_{\mathfrak{h}}, \lambda] \rangle$$

¹ Partially supported by NSF Grant GP5760.