QUASI-PERIODIC SOLUTIONS OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH SMALL DAMPING

BY MARCELLE FRIEDMAN

Communicated by F. John, December 15, 1966

A function f(t) is called quasi-periodic if it can be represented in the form

$$f(t) = F(\omega_1 t, \omega_2 t, \cdots, \omega_m t)$$

where $F(\theta_1, \dots, \theta_m)$ is a continuous function of period 2π in θ_r , $\nu = 1, \dots, m$. The numbers $\omega_1, \dots, \omega_m$ are called the basic frequencies of f(t). We shall denote by $A(\omega_1, \dots, \omega_m)$ the class of all functions f for which F is real analytic. For simplicity of notation we set $\theta = (\theta_1, \dots, \theta_m)$ and $\omega = (\omega_1, \dots, \omega_m)$ (then $A(\omega_1, \dots, \omega_m) = A(\omega)$ and $F(\theta_1, \dots, \theta_m) = F(\theta)$).

The purpose of this note is to study the family of complex systems of differential equations:

(1)
$$\begin{aligned} \dot{z} &= \lambda z + \epsilon f(t, z, \bar{z}), \\ \dot{\theta} &= \omega \end{aligned}$$

parametrized by λ , f analytic in z, \bar{z} , and $f \in A(\omega)$ —i.e. $f(t, z, \bar{z}) = g(\theta, z, \bar{z})$ where g is 2π -periodic in θ —to determine the complex numbers, λ , for which there exists a solution $z = \phi(t, \epsilon) \in A(\omega)$.¹

For Re $\lambda = 0$ there may be no solutions even in the linear case

(2)
$$\dot{z} = \lambda z + \epsilon g(\theta),$$

 $\dot{\theta} = \omega$

because of resonance. It is well known that if Re $\lambda \neq 0$ and $\epsilon > 0$ is small compared with $|\operatorname{Re} \lambda|$ then (1) always has a solution $z = \phi(t, \epsilon) \in A(\omega)$. This was shown by Malkin [7] and Bohr and Neugebauer [4] in the linear case and by Stoker [10] and, in the general case, by Bogoliubov [1].

Our main interest is $|\operatorname{Re} \lambda|$ small compared to ϵ . We shall describe a domain, Ω , in the λ -plane such that for each $\lambda \in \Omega$ the corresponding system (1) has a solution $z = \phi(t, \epsilon) \in A(\omega)$. We call Ω a nonresonance domain. We will show that Ω contains in particular $|\operatorname{Re} \lambda| > 1$ (this

¹ This system is derived from the second order equation $\ddot{x} + c\dot{x} + ax = f(t, x, \dot{x})$ (f quasi-periodic in t) by the transformation $z = \dot{x} + \alpha x$ for some constant α .