THE VIRIAL THEOREM AND ITS APPLICATION TO THE SPECTRAL THEORY OF SCHRÖDINGER OPERATORS

BY JOACHIM WEIDMANN

Communicated by Felix Browder, January 4, 1967

1. Introduction. Let us consider elliptic differential operators of the form

$$H = -\Delta + q(x), \qquad x \in \mathbb{R}^m,$$

where the potential q(x) satisfies the following conditions:

(I) $q \in Q_{\alpha}(\mathbb{R}^m)$ for some $\alpha > 0$; i.e.

$$M_q(x) = \int_{|x-y| \leq 1} |q(y)| |x-y|^{4-m-\alpha} dy$$

is uniformly bounded for $x \in \mathbb{R}^m$.

(II) For every $x \in \mathbb{R}^m$, $x \neq 0$, there exists a radial derivative $q_r(x)$ of q(x) and

$$\epsilon^{-1} |q((1+\epsilon)x) - q(x)| \leq q_0(x) \in \mathcal{Q}_{\beta}(\mathbb{R}^m)$$

holds for $0 < \epsilon < \epsilon_0$ and some $\beta > 0$; in particular we have $rq_r(x) \leq q_0(x)$; hence $rq_r \in Q_\beta(\mathbb{R}^m)$.

Under these conditions we shall prove in §2 a very general form of the Virial Theorem of quantum mechanics. In §§3 and 4 this theorem will be used to deduce some results on the spectrum of H.

Let $L_2(\mathbb{R}^m)$ be the Hilbert space of functions which are squaresummable over \mathbb{R}^m ; the inner product in this space will be denoted by $\langle \cdot , \cdot \rangle$, the norm by $|\cdot|$.

From condition (I) one can conclude (e.g. Ikebe-Kato [2]):

(1) The operator H with domain $D(H) = H_2(\mathbb{R}^m)$ is selfadjoint in $L_2(\mathbb{R}^m)$ $(H_2(\mathbb{R}^m)$ is the closure of $C_0^{\infty}(\mathbb{R}^m)$ with respect to the norm $|u|_2 = \{\sum_{j,k} |\partial^2 u/(\partial x_j \partial x_k)|^2 + \sum_j |\partial u/\partial x_j|^2 + |u|^2\}^{1/2}\}.$

(2) For $u \in D(H)$ and $q \in Q_{\alpha}(\mathbb{R}^m)$ we have $qu \in L_2(\mathbb{R}^m)$.

(3) For $u, v \in D(H)$ we have $\Delta u, \Delta v \in L_2(\mathbb{R}^m)$ and $\langle \Delta u, v \rangle = \langle u, \Delta v \rangle$.

2. The Virial Theorem.

THEOREM. Let conditions (I) and (II) be satisfied. If λ is an eigenvalue of H, u(x) a corresponding eigenfunction, then

 $\langle (2q + rq_r - 2\lambda)u, u \rangle = 0, \qquad 2\langle -\Delta u, u \rangle = \langle rq_r u, u \rangle.$