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1. Introduction. Let us consider elliptic differential operators of the 
form 

H = - A + q(x)y x £ Rm, 

where the potential q(x) satisfies the following conditions: 
(I) q&Qa(Rm) for some a > 0 ; i.e. 

Mq(x) = I | q{y) \\x- y \*~m-«dy 
J \Z-V\*1 

is uniformly bounded for x £ i ? w . 
(II) For every x(~Rm, x 9e 0, there exists a radial derivative qr(x) 

of q(x) and 

e"11 g((l + e)x) - q{x) | g q0(x) G Qt(Rr) 

holds for 0 < e < e 0 and some/3>0; in particular we have rqr(x) èqo(x); 
hence rqr£.Qp(Rm). 

Under these conditions we shall prove in §2 a very general form 
of the Virial Theorem of quantum mechanics. In §§3 and 4 this theo­
rem will be used to deduce some results on the spectrum of H. 

Let L2(R
m) be the Hubert space of functions which are square-

summable over Rm; the inner product in this space will be denoted 
by ( • , • ), the norm by | • | . 

From condition (I) one can conclude (e.g. Ikebe-Kato [2]): 
(1) The operator H with domain D(H)=H2(R

m) is selfadjoint in 
L2(R

m) (H2(R
m) is the closure of Co(Rm) with respect to the norm 

k | 2 = { Z ; , * Idtyidxfixà^+^sldu/dxjlt+lul*}"*). 
(2) For uGD(H) and qGQa(R

m) we have quEL2(R
m). 

(3) For u, vED(H) we have Au, AvEL2(R
m) and (Au, v) = (u, Av). 

2. The Virial Theorem. 

THEOREM. Let conditions (I) and (II) be satisfied. If X is an eigen­
value of H, u(x) a corresponding eigenfunction, then 

((2g + rqr — 2\)u, u) = 0, 2( — Au, u) = (rqru, u). 
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